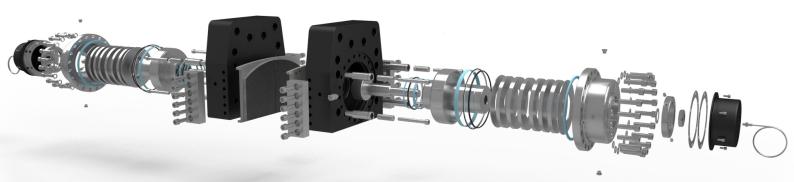

A Pinza e ad Azionamento Diretto Caliper & Direct

Freni Idraulici Hydraulic Brakes

Il centro nevralgico di Coremo resta all'interno dei 5500 metri quadrati della sede di Assago a Milano, dove sono montati e testati tutti i prodotti, sono svolte le lavorazioni meccaniche più importanti ed effettuate le necessarie certificazioni, in conformità con il Sistema di Qualità ISO 9001:2015.

Coremo's nerve centre continues to be within the 5500 square metres of its headquarters at Assago in Milan, where all products are assembled and tested, the key machining processes are carried out and the necessary certification procedures take place, in accordance with the ISO 9001:2015.


Coremo Ocmea S.p.A.

Coremo Ocmea poggia sulla sua lunga tradizione legata alla produzione di freni e frizioni per applicazioni industriali, per volgere l'attenzione al futuro, alla realizzazione di servizi con alto grado di personalizzazione per il cliente: progetti strutturati che comprendono prodotti, supporto tecnico, manutenzione e consulenza.

I punti di forza di Coremo risiedono da sempre nella progettazione accurata e su misura, nell'innovazione costante del prodotto e nella qualità dei componenti.

Coremo Ocmea draws on its long tradition in the manufacture of brakes and clutches for industrial applications, to look firmly to the future, to the realisation of services with a high degree of customisation: structured projects including products, technical support, maintenance and consulting.

Coremo's strong points have always lain in its precise, tailor-made design, constant product innovation and quality of components.

SupportoSupport

Coremo offre un servizio integrato molto specializzato, che, oltre alla selezione del sistema frenante, offre consulenza, manutenzione, analisi e reportistica. L'obiettivo di Coremo è proporre un servizio completo che prenda avvio dalle informazioni che il cliente fornisce, così da ottenere una visione dettagliata delle richieste e fornire la soluzione frenante che meglio soddisfi la domanda.

Coremo's support is increasingly becoming a highly specialised integrated service, offering not only guidance on selection of the braking system but also consulting, maintenance, analysis and reporting. Coremo's aim is to deliver a complete service, starting from the information the customer provides, to obtain a detailed picture of requirements, and supply the braking system best suited to individual needs.

Progettazione e Produzione

Design and Manufacturing

La strategia del Gruppo si è sempre basata sulla fidelizzazione, perseguita attraverso affidabilità dei prodotti, robustezza, facilità d'uso e manutenzione di freni e frizioni, nonché durata nel tempo, prezzo competitivo e puntualità nella consegna.

The Group's strategy has always been based on the generation of customer loyalty, pursued through product reliability and rugged construction, ease of use and maintenance of brake and clutch units, not to mention durability, competitive pricing and prompt delivery.

Introduzione Introduction 04 Freni Idraulici a Pinza Hydraulic Caliper Brakes 06 Personalizzazione Customization 07 Componenti Components 08 Gamma di Pinze Caliper Range 10 Schede Tecniche Data Sheets 11 Freni Idraulici ad Azionamento Diretto Direct Hydraulic Brakes 30 Personalizzazione Customization 31 **Braking Solutions** for Extreme Environments **Braking Solutions** for Extreme Environments 32 **MS Mono-Spinta** MS Mono-Actuated 36 **Schede Tecniche Data Sheets** 37 Altri Prodotti Other Products 70 Dischi 72 Discs Calcolo della Forza Tangenziale **Braking Force Calculation** 79 Corretto Utilizzo del Prodotto Correct Use Of The Product 87

Avvertenze Generali

General Warnings

Usare indumenti appropriatiUse proper work clothes

Possibili pesi elevati Possible high weights

Possibili alte temperature Possible high temperatures

Possibili alte pressioni Possible high pressures

Attenzione alle mani e alle dita Caution to hands and fingers

I prodotti Coremo sono progettati per lavorare con ricambi originali Coremo. L'utilizzo di ricambi non originali rende nulla ogni richiesta di garanzia nei confronti di Coremo.

Coremo's products are designed to be operated with original Coremo replacement parts. Using non-original replacement parts in Coremo brakes and/or clutches voids all warranties issued by Coremo.

Freni Idraulici a Pinza e ad Azionamento Diretto

- Freni Positivi e Negativi
 Oil and Spring Actuated Brakes
- Forze Tangenziali da 14kN to 270kN
 Braking Force Range from 14kN to 270kN
- Molteplici Configurazioni e Sistemi di Regolazione

Multiple Configurations and Regulating Systems

- Sensori ed Indicatori di Stato Sensors and Indicators to Check the Status of the Brake
- Vasta Disponibilità di Materiali di Attrito Large Proposal of Friction Materials
- Solo Materiali Testati e di Alta Qualità
 Only Tested and High-Quality Materials
- Disponibili Soluzioni per Ambienti Estremi

Configurations for Extreme Environmental Conditions are Available

- Personalizzazione del Prodotto Product Customization
- Supporto Tecnico nella Selezione dei Freni

Technical Support for Brake Selection

I freni Idraulici Coremo sono concepiti per soddisfare in modo semplice e tempestivo le esigenze di sicurezza richieste da un'ampia gamma di applicazioni industriali. Disponibili a pinza con pistone o ad azionamento diretto, sia in versione positiva sia negativa, i freni sono stati progettati per consentire molteplici configurazioni e la massima personalizzazione.

Su tutti i freni sono presenti sistemi di regolazione che ne ottimizzano le prestazioni, garantendo altissimi standard di sicurezza ed efficienza, con il minimo livello di usura. Sensori di stato ON/ OFF (meccanici o induttivi) e indicatori di usura dei ferodi, permettono un costante controllo del freno, riducendo tempi e costi di manutenzione e garantendo la massima sicurezza dell'impianto.

I freni idraulici sono equipaggiati con pastiglie di attrito testate dinamicamente e staticamente. Il materiale di attrito viene scelto in fase di selezione per garantire il miglior risultato di frenata, in considerazione delle variabili di lavoro, delle condizioni ambientali, della superfice del disco e di eventuali normative.

Nella configurazione standard, i freni sono progettati per operare a temperature di lavoro comprese tra -10°C e +100°C, in ambienti chiusi o protetti. Per applicazioni in ambienti aperti o in condizioni estreme (basse temperature, mare aperto, ambienti corrosivi) possono essere offerte o studiate soluzioni ad hoc.

Coremo è in grado di soddisfare richieste con alto contenuto di personalizzazione del prodotto, dai particolari alle finiture superficiali.

Coremo Hydraulic Brakes are designed to provide a simple and fast solution to the safety requirements of a wide range of industrial applications. Available with levered or direct thruster, either oil or springs applied, the hydraulic brakes are designed to allow multiple configurations and maximum customization.

All brakes are equipped with regulating systems which optimize performances and guarantee the highest level of efficiency and safety, with the minimum wear rate. Mechanical or inductive ON/OFF sensors and pad wear indicators grant a constant check of the brake, reducing maintenance times and costs, and ensuring the maximum safety.

Hydraulic brakes are fitted with friction pads tested both dynamically and statically. The friction material is chosen during brake selection to guarantee the best braking, considering the application, the environmental conditions, the disc material and applicable regulations.

Standard hydraulic brakes are designed to operate indoors or protected by carter, and at a working temperature between -10°C and +100°C. For outdoors or extreme applications (low temperature, Off-shore, corrosive environments) ad hoc solutions can be proposed.

Coremo can satisfy requests of all customers looking for a high level of product customization, from components to surface finishing.

	Freni Idraulici Hydraulic Brakes									
	Freni Idraulici a Pinza Freni Idraulici ad Azionamento Diretto Hydraulic Caliper Brakes Direct Hydraulic Brakes									
Positivi Oil Applied										

Per stazionamento o tensionamento.
For holding or tensioning.

Forza Tangenziale Braking Force

Da 14,9 kN a 16 kN

Per emergenza o stazionamento. For emergency or holding.

Forza Tangenziale Braking Force

Da From 6,75 kN a 40 kN

Per stazionamento o tensionamento.
For holding or tensioning.

Forza Tangenziale Braking Force

Da From 19,7 kN a 210 kN

Per emergenza o stazionamento. For emergency or holding.

Forza Tangenziale Braking Force

Da From 8,4 kN a 270 kN

Mono-Spinta Mono-Actuated

Per emergenza o stazionamento.
For emergency or holding.

Forza Tangenziale Braking Force

Da From 8 kN a 48 kN

Freni Idraulici a Pinza

- Freni Positivi e Negativi
 Oil and Spring Actuated Brakes
- Per Stazionamento, Tensionamento ed Emergenza
 For Holding, Tensioning and Emergency
- Forze Tangenziali da 5,6kN to 42kN
 Braking Force Range from 5,6kN to 42kN
- Temperature ambiente di lavoro da -10°C a +100°C
 Working temperature from -10°C to +100°C
- Oli a base minerale SAE/ISO 46 Mineral based oils SAE/ISO 46

I freni idraulici a pinza Coremo sono stati progettati per quelle applicazioni industriali nelle quali è richiesta la pressione dell'olio per l'attuazione del sistema frenante, potendo operare in ambenti chiusi o protetti e a temperature di lavoro comprese tra -10°C e +100°C. I freni utilizzano olii a base minerale tipo SAE/ISO 46. È possibile ricorrere ad olii diversi salvo verifica di compatibilità delle guarnizioni.

Il principio del leverismo assicura un funzionamento semplice, ma molto efficace.

Il corpo pinza, in ghisa sferoidale, è stato progettato per resistere ad alti carchi e cicli di lavoro ripetitivi; può essere equipaggiato con pistoni di diverse forze frenanti, nella versione positiva o negativa, con montaggio destro o sinistro.

La presenza di un pacco multi-molle all'interno del pistone negativo garantisce un elevato numero di attuazioni e la possibilità di ottenere diverse forze frenanti modulando la composizione delle molle.

Per applicazioni speciali vengono proposte soluzioni ad hoc, quali finiture superficiali per l'utilizzo in ambienti aperti o corrosivi.

Coremo **hydraulic caliper brakes** are designed for those industrial applications which use oil pressure to activate the braking system. They can operate indoors or protected by carter and at a working temperature between -10°C and 100°C. The brakes require mineral oil SAE/ISO 46. Different oils can be used only after checking the compatibility with the seals.

The lever mechanism principle ensures simple but very effective operation.

Spheroidal cast iron body has been designed to withstand stressed and repeated work cycles. A lever assembly can be combined with different sizes of oil applied or springs applied thrusters, which can be mounted left or right side.

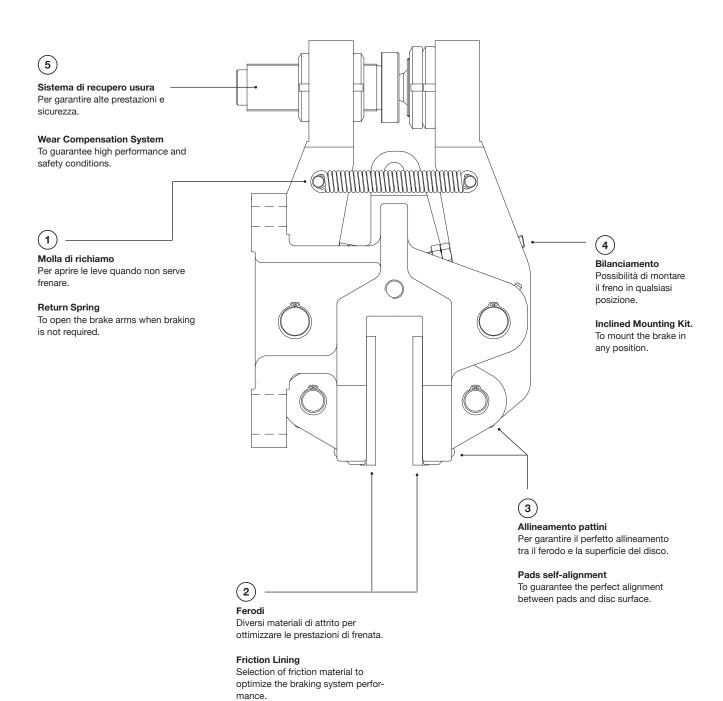
Multi-spring pack ensures, in the negative thrusters, high life cycle. Different braking forces can be obtained by modulating the number of the springs.

Ad hoc solutions, such us protective finishing, can be proposed for outdoors or corrosive applications.

Hydraulic Caliper Brakes

Personalizzazione Customization											
	Α	D	E EL	F	G GL	A-N	D-N	E-N EL-N	F-N	G-N GL-N	
Recupero usura ferodi Wear Compensation	•	•	•	•	•	•	•	•	•	•	
Bilanciamento Inclined Mounting Kit	•	•	•	•	•	•	•	•	•	•	
Allineamento pattini Pads Self Alignment	•	•	•	•	•	•	•	•	•	•	
Indicatore d'usura Wear Indicator	0	0	0	0	0	0	0	0	0	0	
Pattino doppio Double Pads	0	-	-	-	-	0	-	-	-	-	
Indicatore On Off On Off Indicator	0	0	0	0	0	0	0	0	0	0	
Vite di sicurezza Safety Screw	-	-	-	-	-	•	•	•	•	•	
 Già incluso Already Included 	Disponibile Available	- Non dis Not Avai	ponibile lable								

I freni Coremo possono essere personalizzati con optional quali: particolari verniciature, differenti materiali d'attrito, segnalatori d'usura, pattini doppi ed ulteriori accorgimenti al fine di rendere il prodotto idoneo a particolari condizioni applicative in cui viene chiamato ad operare.

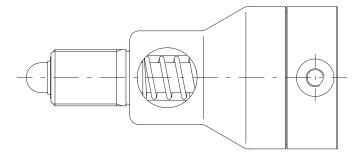

Coremo's brakes can be customized with optionals such: as special paintings, different friction materials, wear indicators, double pads and other features, in order to make the product suitable for any particular application.

Componenti Components

Corpo in ghisa sferoidale progettato per aumentare la forza del pistone.

Spheroidal cast iron body

Designed to increase the thruster force.



Pistone in alluminio o acciaio

Low weight aluminium or steel thruster

Positivi

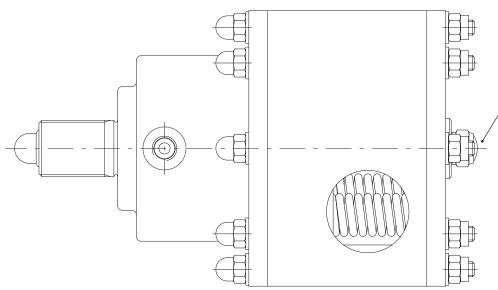
Air Applied

INTERNO

Pistone

Pistone con stelo in acciaio temprato.

Molla di ritorno pistone


INSIDE

Piston

Steel piston with hardened rod pusher.

Piston return spring

Negativi Spring Applied

I valori di coppia indicati nelle schede tecniche sono ottenuti considerando il numero massimo di molle. Coppie proporzionalmente inferiori possono essere ottenute riducendo il numero di molle. The torque values indicated in the technical data

The torque values indicated in the technical data sheets are obtained with the maximum number of springs. Proportionally lower torques can be achieved by reducing the number of springs.

Vite di ritegno / Silenziatore

Per garantire la sicurezza durante il montaggio / Silenziatore applicato a freno montato.

Retaining Screw / Silencer

To guarantee safety during mounting operations / Air silencer once the brake is mounted.

INTERNO

Pistone

Pistone con stelo in acciaio temprato.

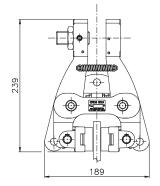
Molle

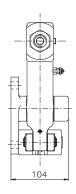
Set di molle modulabile per garantire diversi livelli di forza frenante.

INSIDE

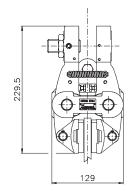
Piston

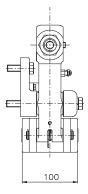
Steel piston with hardened rod pusher.

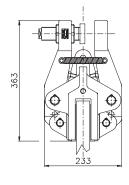

Spring Set

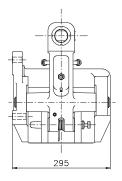

Modular spring set available to meet different clamping forces requirements.

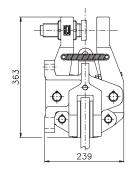
Freni Idraulici a Pinza

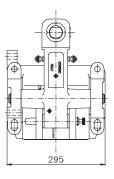

Gamma di Pinze Caliper Range

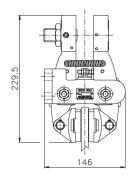

A Serie

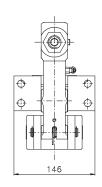


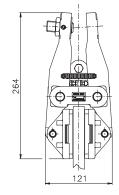

D Serie

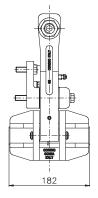



E Serie

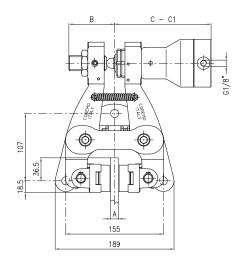


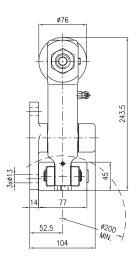

EL Serie



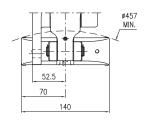

F Serie

G Serie



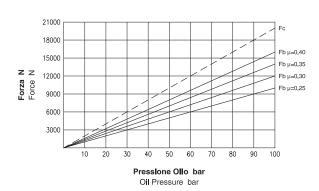

Schede Tecniche

Data Sheets


		Stazionamento Holding	Emergenza Emergency	Tensionamento Tensioning	Ciclica Cyclic	Sup. Pastiglie Ferodo Pads Surface
A 3 ID	Pg. 12		0	0	0	2.468 [mm²]
D 3 ID	13	-	0	0	0	4.992 [mm²]
F 3 ID	14	-	0	0	0	4.992 [mm²]
G 3 ID	15	-	0	0	0	15.015 [mm²]
A 2N ID	16	•			o	2.468 [mm²]
A 3N ID	17	0	0	-	0	2.468 [mm²]
D 2N ID	18	0	0	-	0	4.992 [mm²]
D 3N ID	19	0	0	-	0	4.992 [mm²]
D 3N ID - 17	20	0	0	-	0	4.992 [mm²]
E 4N ID	21	0	0	-	0	20.369 [mm ²]
EL 4N ID	22	0		-	0	20.369 [mm ²]
F 2N ID	23	0		-	0	4.992 [mm²]
F 3N ID	24	0		-	0	4.992 [mm²]
F 3N ID - 17	25	0	0	-	0	4.992 [mm²]
G 2N ID	26	0		-	o	15.015 [mm²]
G 3N ID	27	0		-	0	15.015 [mm²]
G 3N ID - 17	28	0	0	-	0	15.015 [mm²]

O Adatto - Non adatto
Suitable - Unsuitable

A Spessore Disco Disc Thickness	В	С	C1 (max)
mm	mm	mm	mm
12.7	73	153.5	176
25.4	86	160	182.5


Versione Pattino Doppio Double Pad Version

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 100 80 Pressione Ollo bar Oil Pressure bar 60 40 20 750 1500 2250 3000 3750 4500 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 20000 N a 100 bar Forza tangenziale Fb : 16000 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.03

Coppla frenante Mb = Fb · Re (Nm)

Pressione Max : 100 bar Volume olio : 0.025 dm³

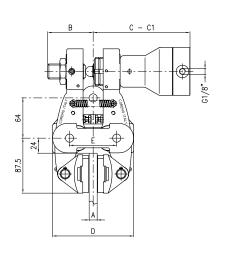
Volume ollo per uno spostamento di 2mm per ciascun ferodo : 0.009 dm³ Peso versione standard : 12.6 kg Peso versione pattino doppio : 13.3 kg Spessore del ferodo nuovo : 16 mm

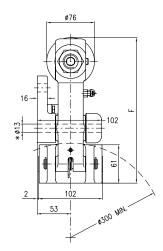
Usura Max totale : 16 mm

Technical Data

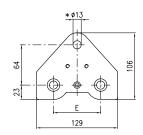
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 20000 N at 100 bar Braking force Fb : 16000 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.03


Braking torque $Mb = Fb \cdot Re (Nm)$


Max pressure: 100 bar
Oil Volume: 0.025 dm³
Total oil displacement for 2mm
movement of each pad: 0.009 dm³
Weight standard version: 12.6 kg
Weight double pad version: 13.3 kg
Thickness of new lining: 16 mm

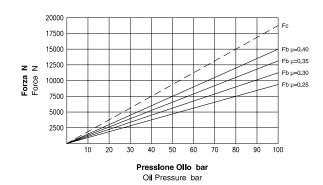
Max total wear: 16 mm



Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D	E	F
mm	mm	mm	mm	mm	mm	mm
12.7	72	154	170.5	129	75	231.5
25.4	71.5	156	171	132	84	235
30	83	163	180	140	75	231.5
40	79	167.5	183.5	149	84	231.5

Vista Base di Montaggio Mounting Base View


- VItI M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with caliper

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 100 Pressione Ollo bar Oil Pressure bar 1500 2250 3000 3750 4500 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc \cdot 2 \cdot μ (N) Forza di chiusura Fc: 18750 N a 100 bar Forza tangenziale Fb: 15000 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.033

Coppia frenante Mb = Fb Re (Nm)

Pressione Max: 100 bar Volume olio: 0.025 dm³

Volume olio per uno spostamento dl 2mm per clascun ferodo : 0.008 dm³

Peso: 11.3 kg

Spessore del ferodo nuovo: 11 mm

Usura Max totale: 12 mm

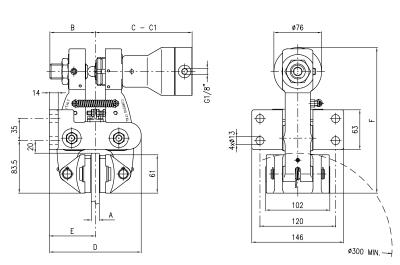
Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc + 2 \mu (N)$ Clamping force Fc: 18750 N at 100 bar

Braking force Fb: 15000 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.033

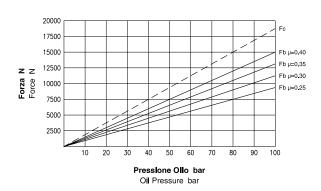
Braking torque $Mb = Fb \cdot Re \cdot (Nm)$


Max pressure: 100 bar Oil Volume: 0.025 dm3 Total oil displacement for 2mm movement of each pad: 0.008 dm3

Weight: 11.3 kg

Thickness of new lining: 11 mm Max total wear : 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


A Spessore Disco Disc Thickness	В	С	C1 (max)	D	E	F
mm	mm	mm	mm	mm	mm	mm
12.7	72	154	170.5	146	73	231.5
25.4	71.5	156	171	146	77.5	235
30	83	163	180	146	73	231.5
40	79	167.5	183.5	152	77.5	231.5

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu=0.40$ Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 18750 N a 100 bar Forza tangenziale Fb : 15000 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.033

Coppia frenante Mb = Fb · Re (Nm)

Pressione Max : 100 bar Volume olio : 0.025 dm³

Volume olio per uno spostamento di 2mm per clascun ferodo : 0.008 dm³

Peso:11 kg

Spessore del ferodo nuovo : 11 mm

Usura Max totale: 12 mm

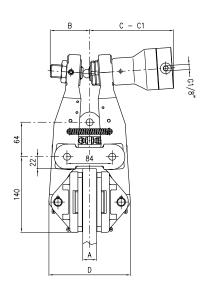
Technical Data

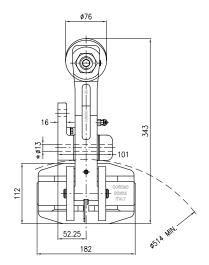
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N)

Clamping force Fc: 18750 N at 100 bar Braking force Fb: 15000 N at 100 bar

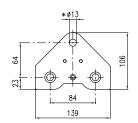
Effective disc radius Re = Disc radius (m) - 0.033

Braking torque $Mb = Fb \cdot Re \cdot (Nm)$


Max pressure: 100 bar
Oil Volume: 0.025 dm³
Total oil displacement for 2mm
movement of each pad: 0.008 dm³


Weight: 11 kg

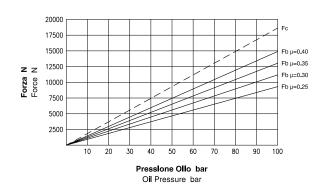
Thickness of new lining: 11 mm Max total wear: 12 mm


Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D
mm	mm	mm	mm	mm
25.4	73	156	165	151
40	85	163.5	173	165.5

Applicabile anche su disco spessore 30 mm Applicable also on disc thickness 30 mm

Vista Base di Montaggio Mounting Base View


- * VItI M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with caliper

Dati Coppia / Torque data

Dlametro Disco mm Disc Diameter mm 514 610 762 914 1065 1220 1370 100 800 9000 10000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu=0.40\,$ Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N) Forza di chiusura $\,$ Fc : 18625 N a 100 bar Forza tangenziale $\,$ Fb : 14900 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.062

Coppla frenante Mb = Fb · Re (Nm)

Pressione Max : 100 bar Volume olio : 0.025 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.008 dm³

Peso: 17.2 kg

Spessore del ferodo nuovo : 8 mm Usura Max totale : 10 mm

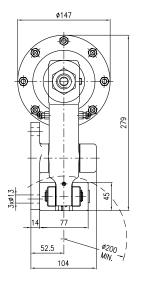
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 18625 N at 100 bar Braking force Fb : 14900 N at 100 bar

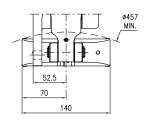
Effective disc radius Re = Disc radius (m) - 0.062

Braking torque Mb = Fb Re (Nm)

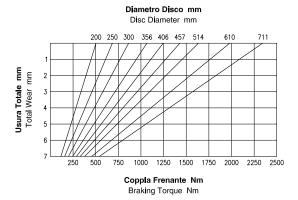

Max pressure: 100 bar
Oil Volume: 0.025 dm³
Total oil displacement for 2mm
movement of each pad: 0.008 dm³


Weight: 17.2 kg

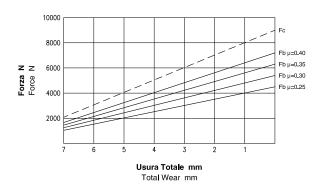
Thickness of new lining: 8 mm Max total wear: 10 mm



Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.



A	В	С	C1
Spessore Disco Disc Thickness			(max)
mm	mm	mm	mm
12.7	72.5	234.5	250.5
25.4	86	241	257


Versione Pattino Doppio Double Pad Version

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N)

Forza di chiusura Fc : 9000 N Forza tangenziale Fb : 7200 N

Raggio effettivo disco Re = Raggio disco (m) - 0.03

Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 25 bar

Pressione Max : 100 bar Volume olio : 0.08 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.018 dm³ Peso versione standard : 15.2 kg

Peso versione pattino doppio : 15.9 kg Spessore del ferodo nuovo : 16 mm

Usura Max totale : 16 mm

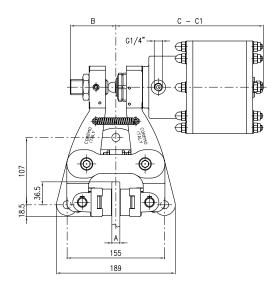
Technical Data

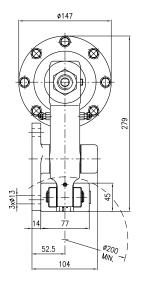
Nominal friction coefficient $\,\mu = 0.40$ Braking force $\,Fb = Fc \cdot 2 \cdot \mu \,$ (N)

Clamping force Fc: 9000 N Braking force Fb: 7200 N

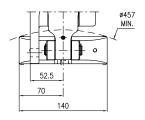
Effective disc radius Re = Disc radius (m) - 0.03 Braking torque Mb = Fb · Re (Nm)

Minimum release pressure : 25 bar

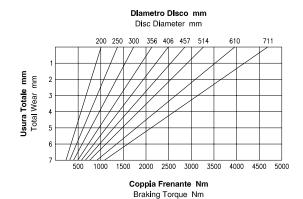

Max pressure : 100 bar Oil Volume : 0.08 dm³


Total oil displacement for 2mm movement of each pad: 0.018 dm³ Weight standard version: 15.2 kg Weight double pad version: 15.9 kg

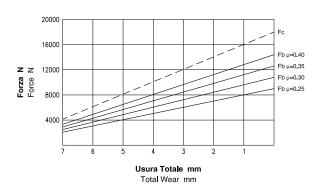
Thickness of new lining: 16 mm Max total wear: 16 mm



Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.



A Spessore Disco Disc Thickness	В	С	C1 (max)
mm	mm	mm	mm
12.7	72.5	234.5	259
25.4	86	241	265.5


Versione Pattino Doppio Double Pad Version

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 18000 N Forza tangenziale Fb : 14400 N

Raggio effettivo disco Re = Raggio disco (m) - 0.03

Coppia frenante Mb = Fb \cdot Re (Nm) Pressione minima di apertura : 50 bar

Pressione Max: 100 bar Volume ollo: 0.08 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.018 dm³

Peso versione standard : 17.5 kg Peso versione pattino doppio : 18.2 kg Spessore del ferodo nuovo : 16 mm

Usura Max totale : 16 mm

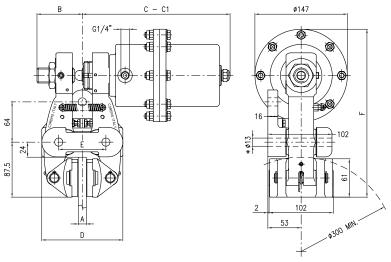
Technical Data

Nominal friction coefficient $~\mu=0.40$ Braking force $~Fb=Fc\cdot 2\cdot \mu$ (N) ~

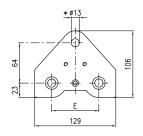
Clamping force Fc : 18000 N Braking force Fb : 14400 N

Effective disc radius Re = Disc radius (m) - 0.03

Braking torque Mb = Fb · Re (Nm)
Minimum release pressure : 50 bar


Max pressure : 100 bar Oil Volume : 0.08 dm³

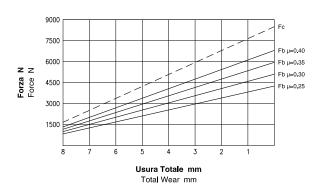
Total oil displacement for 2mm movement of each pad: 0.018 dm³ Weight standard version: 17.5 kg Weight double pad version: 18.2 kg


Thickness of new lining: 16 mm Max total wear: 16 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D	E	F
mm	mm	mm	mm	mm	mm	mm
12.7	72	235	246.5	129	75	267
25.4	71.5	235.5	248	132	84	270
30	83	244	256	140	75	267
40	78.5	248.5	259.5	149	84	267

Vista Base di Montaggio Mounting Base View


- * VItl M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with caliper

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 300 356 406 457 514 610 711 762 1 2 3 4 610 711 762 2 3 4 610 711 762 3 4 610 711 762 4 7 8 250 500 750 1000 1250 1500 1750 2000 2250 2500 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N)

Forza di chiusura Fc: 8500 N Forza tangenziale Fb: 6800 N

Raggio effettivo disco Re = Raggio disco (m) - 0.033

Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 25 bar

Pressione Max : 100 bar Volume olio : 0.08 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.017 dm³

Peso: 13.8 kg

Spessore del ferodo nuovo: 11 mm

Usura Max totale : 12 mm

Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N)

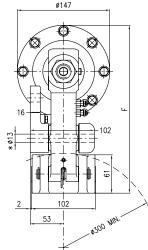
Clamping force Fc: 8500 N Braking force Fb: 6800 N

Effective disc radius Re = Disc radius (m) - 0.033

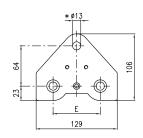
Braking torque Mb = Fb · Re (Nm) Minimum release pressure : 25 bar

Max pressure : 100 bar
Oil Volume : 0.08 dm³

Total oil displacement for 2mm movement of each pad: 0.017 dm³


Weight: 13.8 kg

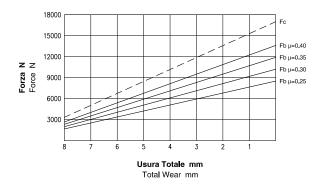
Thickness of new lining: 11 mm Max total wear: 12 mm



Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D	E	F
mm	mm	mm	mm	mm	mm	mm
12.7	72	235	253	129	75	267
25.4	71.5	236.5	252.5	132	84	273
30	83	244	262.5	140	75	267
40	78.5	248.5	266	149	84	267

Vista Base di Montaggio Mounting Base View


- * Viti M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with caliper

Dati Coppia / Torque data

Pisc Diameter mm Disc Diameter mm 300 356 406 457 514 610 711 762 300 356 406 457 514 610 711 762 300 350 400 4500 5000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 17000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.033

Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 50 bar

Forza tangenziale Fb: 13600 N

Pressione Max : 100 bar

Volume olio : 0.08 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.017 dm³

Peso: 16.1 kg

Spessore del ferodo nuovo : 11 mm

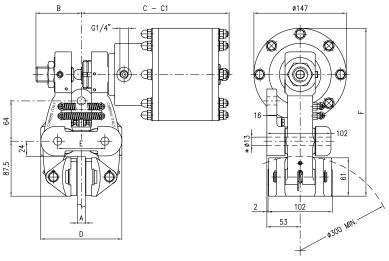
Usura Max totale: 12 mm

Technical Data

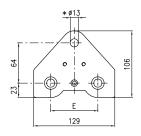
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N) Clamping force Fc : 17000 N Braking force Fb : 13600 N

Effective disc radius Re = Disc radius (m) - 0.033

Braking torque Mb = Fb · Re (Nm)
Minimum release pressure : 50 bar
Max pressure : 100 bar
Oil Volume : 0.08 dm³


Total oil displacement for 2mm movement of each pad: 0.017 dm³

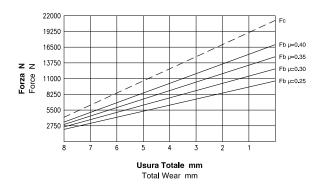
Weight: 16.1 kg


Thickness of new lining: 11 mm Max total wear: 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D	E	F
mm	mm	mm	mm	mm	mm	mm
12.7	72	235	253	129	75	267
25.4	71.5	236.5	252.5	132	84	273
30	83	244	262.5	140	75	267
40	78.5	248.5	266	149	84	267

Vista Base di Montaggio Mounting Base View


- * Viti M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with caliper

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N)

Forza di chiusura Fc : 21187.5 N Forza tangenziale Fb : 16950 N

Raggio effettivo disco Re = Raggio disco (m) - 0.033

Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 70 bar

Pressione Max : 100 bar Volume olio : 0.08 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.017 dm³

Peso: 16.5 kg

Spessore del ferodo nuovo: 11 mm

Usura Max totale : 12 mm

Technical Data

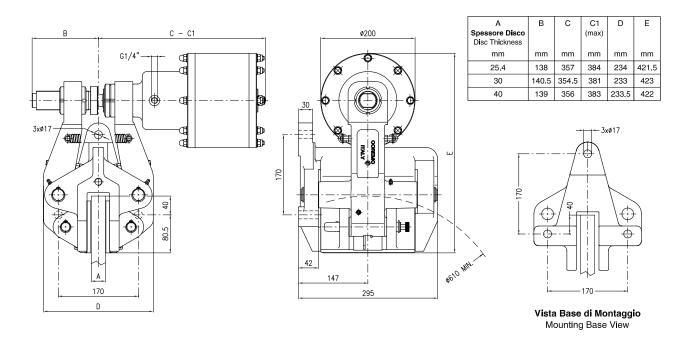
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 21187.5 N

Braking force Fb: 16950 N

Effective disc radius Re = Disc radius (m) - 0.033 Braking torque Mb = Fb \cdot Re (Nm)

Minimum release pressure : 70 bar

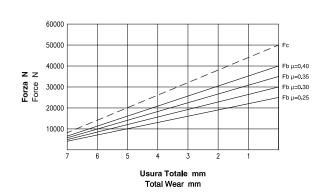
Max pressure : 100 bar Oil Volume : 0.08 dm³


Total oil displacement for 2mm movement of each pad: 0.017 dm³

Weight: 16.5 kg

Thickness of new lining: 11 mm Max total wear: 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.



Dati Coppia / Torque data

Dlametro Dlsco mm Disc Diameter mm 610 762 914 1065 1220 1370 1525 6 7 3000 6000 9000 12000 15000 18000 21000 24000 27000 3000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 50000 N Forza tangenziale Fb : 40000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.065 Coppia frenante Mb = Fb \cdot Re (Nm)

Pressione minima di apertura : 60 bar Pressione Max : 100 bar

Volume ollo: 0.2 dm3

Volume olio per uno spostamento di 2mm per ciascun ferodo: 0.054 dm³

Peso: 74 kg

Spessore del ferodo nuovo : 8 mm Usura Max totale : 12 mm

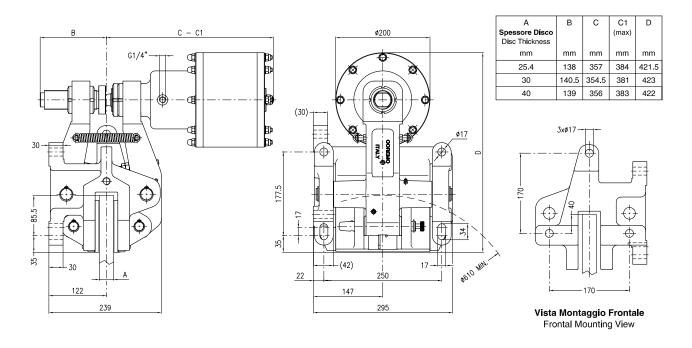
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 50000 N Braking force Fb : 40000 N

Effective disc radius Re = Disc radius (m) - 0.065 Braking torque Mb = Fb Re (Nm)

Minimum release pressure : 60 bar

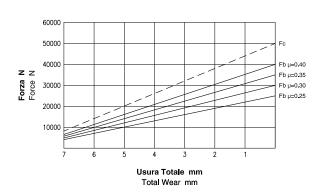
Max pressure : 100 bar Oil Volume : 0.2 dm³


Total oil displacement for 2mm movement of each pad: 0.054 dm³

Weight: 74 kg

Thickness of new lining: 8 mm Max total wear: 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.



Dati Coppia / Torque data

| Disc Diameter | Disc | |

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 50000 N Forza tangenziale Fb : 40000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.065

Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 60 bar

Pressione Max : 100 bar Volume olio : 0.2 dm³

Volume olio per uno spostamento dl 2mm per clascun ferodo : 0.054 dm³

Peso : 77 kg

Spessore del ferodo nuovo : 8 mm Usura Max totale : 12 mm

Technical Data

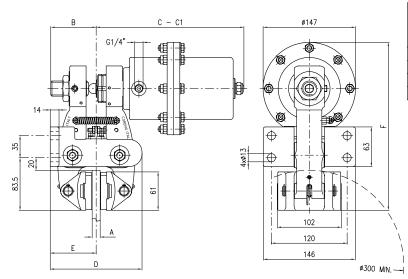
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 50000 N

Braking force Fb: 40000 N

Effective disc radius Re = Disc radius (m) - 0.065 Braking torque Mb = Fb · Re (Nm)

Minimum release pressure : 60 bar

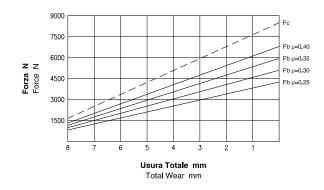
Max pressure : 100 bar Oil Volume : 0.2 dm³


Total oil displacement for 2mm movement of each pad: 0.054 dm³

Weight: 77 kg

Thickness of new lining : 8 mm Max total wear : 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


А	В	С	C1	D	Е	F
Spessore Disco Disc Thickness			(max)			
mm	mm	mm	mm	mm	mm	mm
12.7	72	235	246.5	146	73	267
25.4	71.5	235.5	248	146	77.5	270
30	83	244	256	146	73	267
40	78.5	248.5	259.5	152	77.5	267

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 300 356 406 457 514 610 Usura Totale mm Total Wear mm 500 1000 1250 1500 1750 2000 2250 2500 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc \cdot 2 \cdot μ (N) Forza di chiusura Fc: 8500 N

Forza tangenziale Fb: 6800 N

Raggio effettivo disco Re = Raggio disco (m) - 0.033 Coppia frenante Mb = Fb Re (Nm)

Pressione minima di apertura : 25 bar Pressione Max: 100 bar

Volume olio: 0.08 dm3

Volume olio per uno spostamento di 2mm per ciascun ferodo: 0.017 dm3

Peso: 13.5 kg

Spessore del ferodo nuovo: 11 mm

Usura Max totale: 12 mm

Technical Data

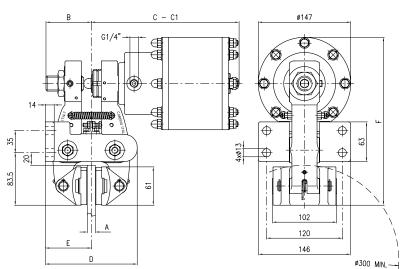
Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc + 2 \mu (N)$ Clamping force Fc: 8500 N Braking force Fb: 6800 N

Effective disc radius Re = Disc radius (m) - 0.033

Braking torque Mb = Fb Re (Nm)Minimum release pressure: 25 bar

Max pressure: 100 bar Oil Volume: 0.08 dm3

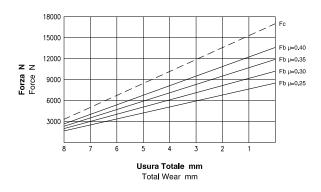
Total oil displacement for 2mm movement of each pad: 0.017 dm3


Weight: 13.5 kg

Thickness of new lining: 11 mm

Max total wear: 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


A Spessore Disco Disc Thickness	В	С	C1 (max)	D	E	F
mm	mm	mm	mm	mm	mm	mm
12.7	72	235	253	146	73	267
25.4	71.5	236.5	252.5	146	77.5	273
30	83	244	262.5	146	73	267
40	78.5	248.5	266	152	77.5	267

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 300 356 406 457 514 610 711 762 1 2 3 4 610 711 762 3 4 610 711 762 3 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 17000 N Forza tangenziale Fb : 13600 N

Raggio effettivo disco Re = Raggio disco (m) - 0.033

Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 50 bar

Pressione Max : 100 bar Volume olio : 0.08 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.017 dm³

Peso: 15.8 kg

Spessore del ferodo nuovo : 11 mm

Usura Max totale : 12 mm

Technical Data

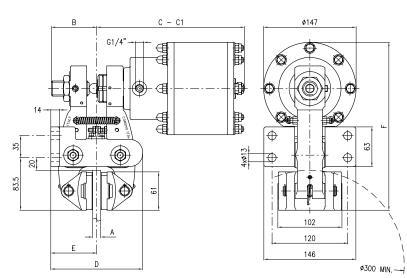
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N)

Clamping force Fc: 17000 N Braking force Fb: 13600 N

Effective disc radius Re = Disc radius (m) - 0.033

Braking torque $Mb = Fb \cdot Re \ (Nm)$ Minimum release pressure : 50 bar

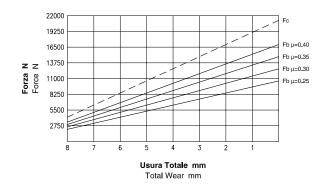
Max pressure : 100 bar Oil Volume : 0.08 dm³


Total oil displacement for 2mm movement of each pad: 0.017 dm³

Weight: 15.8 kg

Thickness of new lining: 11 mm Max total wear: 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


A Spessore Disco Disc Thickness	В	С	C1 (max)	D	Е	F
mm	mm	mm	mm	mm	mm	mm
12.7	72	235	253	146	73	267
25.4	71.5	236.5	252.5	146	77.5	273
30	83	244	262.5	146	73	267
40	78.5	248.5	266	152	77.5	267

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 300 356 406 457 514 610 711 762 | The column of t

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 21187.5 N Forza tangenziale Fb : 16950 N

Raggio effettivo disco Re = Raggio disco (m) - 0.033 Coppia frenante Mb = Fb \cdot Re (Nm)

Pressione minima di apertura : 70 bar Pressione Max : 100 bar

Volume olio : 0.08 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.017 dm³

Peso: 16.2 kg

Spessore del ferodo nuovo : 11 mm

Usura Max totale : 12 mm

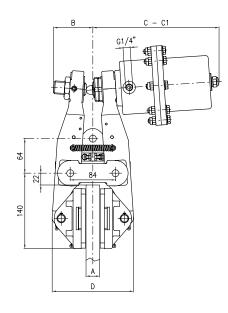
Technical Data

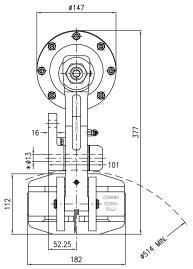
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N) Clamping force Fc : 21187.5 N Braking force Fb : 16950 N

Effective disc radius Re = Disc radius (m) - 0.033

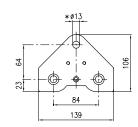
Braking torque Mb = Fb · Re (Nm) Minimum release pressure : 70 bar Max pressure : 100 bar Oil Volume : 0.08 dm³

Total oil displacement for 2mm movement of each pad: 0.017 dm³


Weight: 16.2 kg


Thickness of new lining: 11 mm

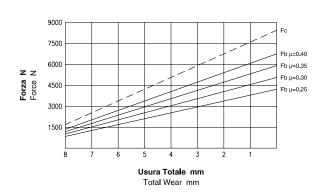
Max total wear : 12 mm


Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D
mm	mm	mm	mm	mm
25.4	73	234	245.5	151
40	85.5	242	253.5	165.5

Applicabile anche su disco spessore 30 mm Applicable also on disc thickness 30 mm

Vista Base di Montaggio Mounting Base View


- * VItI M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with calipe

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N)

Forza di chiusura Fc : 8437.5 N Forza tangenziale Fb : 6750 N

Ragglo effettivo disco Re = Ragglo disco (m) - 0.062

Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 25 bar Pressione Max : 100 bar

Volume olio: 0.08 dm³

Volume olio per uno spostamento dl 2mm per clascun ferodo : 0.017 dm³

Peso: 19.7 kg

Spessore del ferodo nuovo : 8 mm Usura Max totale : 10 mm

Technical Data

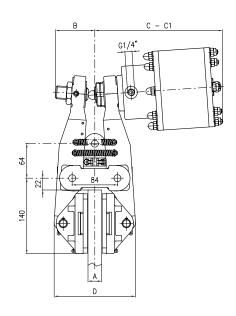
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 8437.5 N

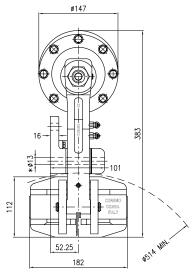
Braking force Fb: 6750 N

Effective disc radius Re = Disc radius (m) - 0.062 Braking torque Mb = Fb · Re (Nm)

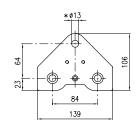
Minimum release pressure : 25 bar

Max pressure : 100 bar Oil Volume : 0.08 dm³


Total oil displacement for 2mm movement of each pad: 0.017 dm³


Weight: 19.7 kg

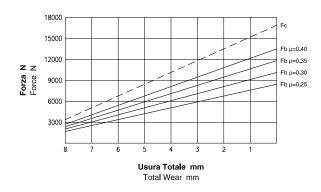
Thickness of new lining: 8 mm Max total wear: 10 mm


Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D
mm	mm	mm	mm	mm
25.4	73	237	245.5	151
40	85.5	245	253.5	165.5

Applicabile anche su disco spessore 30 mm Applicable also on disc thickness 30 mm

Vista Base di Montaggio Mounting Base View


- * Viti M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with caliper

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 514 610 762 914 1065 1220 1370 2 3 4 5 5 6 7 8 1000 2000 3000 4000 5000 6000 7000 8000 9000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 16875 N

Forza tangenziale Fb: 13500 N

Ragglo effettivo disco Re = Ragglo disco (m) - 0.062 Coppla frenante Mb = Fb \cdot Re (Nm)

Pressione minima di apertura : 50 bar Pressione Max : 100 bar Volume olio : 0.08 dm³

Volume olio per uno spostamento dl 2mm per clascun ferodo : 0.017 dm³

Peso: 22 kg

Spessore del ferodo nuovo : 8 mm Usura Max totale : 10 mm

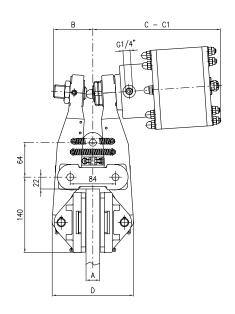
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 16875 N Braking force Fb : 13500 N

Effective disc radius Re = Disc radius (m) - 0.062 Braking torque Mb = Fb · Re (Nm)

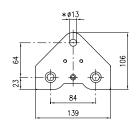
Minimum release pressure : 50 bar

Max pressure : 100 bar Oil Volume : 0.08 dm³


Total oil displacement for 2mm movement of each pad: 0.017 dm³


Weight: 22 kg

Thickness of new lining: 8 mm Max total wear: 10 mm

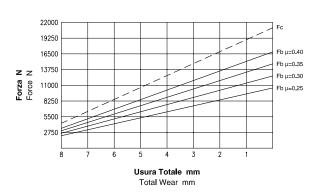

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

A Spessore Disco Disc Thickness	В	С	C1 (max)	D
mm	mm	mm	mm	mm
25.4	73	237	245.5	151
40	85.5	245	253.5	165.5

Applicabile anche su disco spessore 30 mm Applicable also on disc thickness 30 mm

Vista Base di Montaggio Mounting Base View

- * VItI M12 classe 8.8 fornite con la pinza
- * Bolts M12 grade 8.8 supplied with calipe


Dati Coppia / Torque data

Disc Diameter mm 514 610 762 914 1065 1220 1370 120 1370 1370 120 1370 1250 2500 3750 5000 6250 7500 8750 10000 11250 Coppla Frenante Nm Braking Torque Nm

Diametro Disco mm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 21062.5 N

Forza di chiusura FC : 21062.5 N Forza tangenziale Fb : 16850 N

Ragglo effettivo disco Re = Ragglo disco (m) - 0.062 Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 70 bar

Pressione Max : 100 bar Volume olio : 0.08 dm³

Volume olio per uno spostamento dl 2mm per clascun ferodo : 0.017 dm³

Peso: 22.4 kg

Spessore del ferodo nuovo : 8 mm Usura Max totale : 10 mm

Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N) Clamping force Fc : 21062.5 N Braking force Fb : 16850 N

Effective disc radius Re = Disc radius (m) - 0.062

Braking torque Mb = Fb · Re (Nm) Minimum release pressure : 70 bar Max pressure : 100 bar

Oil Volume: 0.08 dm³

Total oil displacement for 2mm movement of each pad: 0.017 dm³

Weight: 22.4 kg

Thickness of new lining: 8 mm Max total wear: 10 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Freni Idraulici ad Azionamento Diretto

- Freni Positivi e Negativi
 Oil and Spring Actuated Brakes
- Per Stazionamento, Tensionamento ed Emergenza
 For Holding, Tensioning and Emergency
- Forze Tangenziali da 8kN to 270kN
 Braking Force Range from 8kN to 270kN
- Temperature ambiente di lavoro da -10°C a +100°C
 Working temperature from -10°C to +100°C
- Oli a base minerale SAE/ISO 46 Mineral based oils SAE/ISO 46

I freni idraulici ad azionamento diretto, serie ID, sono stati progettati per applicazioni industriali pesanti nelle quali è richiesta un'elevata forza frenante.

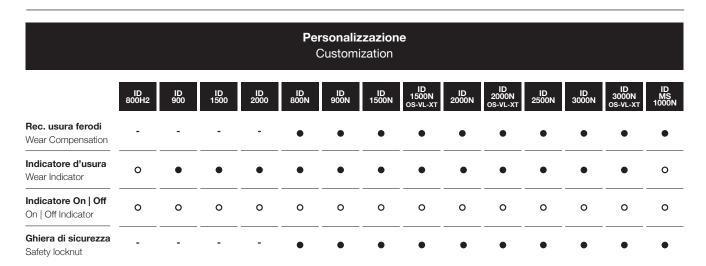
La pressione idraulica fornita al freno esercita una forza di spinta sul pistone interno il quale agisce direttamente sulla pastiglia di attrito. Questi freni costituiti da due corpi in acciaio, indipendenti e speculari, garantiscono tempi di reazione estremamente rapidi ed una ridondanza utile ad assicurare una forza frenante anche in caso di problemi ad uno dei due corpi.

Disponibili in versione positiva o negativa, sono progettati per operare in ambenti chiusi o protetti, a temperature di lavoro comprese tra -10°C e +100°C e a pressioni fino a 200 bar. Inoltre possono lavorare con dischi freno di diverso spessore e diametro. Il principio di funzionamento è semplice ed efficace, rendendo l'installazione e la manutenzione del freno particolarmente agevole.

Si raccomanda l'utilizzo di olio a base minerale tipo SAE/ISO 46. È possibile usare olii diversi salvo verifica di compatibilità delle guarnizioni.

Coremo direct hydraulic brakes, ID series, have been designed for heavy industrial applications where high braking forces are required.

The hydraulic pressure supplied to the brake exerts a force on the internal piston, which acts directly on the friction pad. These brakes, formed by two independent and specular steel bodies, ensure extremely fast reaction times and a redundancy which guarantees a braking force even in case of problems in one of the two halves.


Coremo direct hydraulic brakes are available in oil or spring applied version. They are designed to operate indoors or protected by carter, at a working temperature between -10°C and +100°C, at a pressure up to 200 bar and with brake discs of different thicknesses and diameters.

Thanks to its simple and effective operating principle the ID brakes are easy to apply and fast to maintain.

Coremo hydraulic caliper brakes work with mineral oil SAE/ISO46. Different oils can be used only after checking the compatibility with the seals.

Direct Hydraulic Brakes

Già incluso
 Already Included

O Disponibile Available Non disponibile Not Available

I freni Coremo possono essere personalizzati con optional quali: particolari verniciature, differenti materiali d'attrito, segnalatori d'usura, pattini doppi ed ulteriori accorgimenti al fine di rendere il prodotto idoneo a particolari condizioni applicative in cui viene chiamato ad operare.

Coremo's brakes can be customized with optionals such: as special paintings, different friction materials, wear indicators, double pads and other features, in order to make the product suitable for any particular application.

Freni per Ambienti Estremi

Serie OSOFF-SHORE

Serie VL Very Low Temperature

Serie XT
OFF-SHORE
Very Low Temperature

Freni idraulici diretti serie OS

I freni idraulici serie ID-OS (Off-Shore) sono stati progettati per applicazioni in ambienti altamente corrosivi quali quelli Off-Shore e fronte mare. Questa serie è stata disegnata riducendo quelle geometrie che potrebbero favorire l'innesco di fenomeni corrosivi, mentre i materiali e le componenti sono stati selezionati al fine di ridurre al minimo anche gli effetti di elettrolisi.

Il ricorso a speciali trattamenti superficiali nonché all'acciaio INOX è stato preferito alla classica verniciatura d'assieme al fine di agevolare la manutenzione, lo smontaggio ed anche il rimontaggio del freno, dopo il quale non è richiesta nessuna riverniciatura.

La soluzione adottata per la serie OS è stata testata e certificata da laboratori esterni a Coremo i quali, tramite appositi report, dimostrano che il freno ha una capacità di resistenza in ambienti corrosivi equiparabile agli standard C5-M.

Disponibili nella versione negativa, questi freni sono stati progettati per operare a temperature di lavoro comprese tra -10°C e +100°C e a pressioni fino a 200 bar.

Hydraulic direct brakes "OS" series

Coremo direct hydraulic ID-OS series (Off-Shore) has been designed for heavy duty applications in highly corrosive environments such as sea-front and off-Shore. This series has been designed to minimize geometries that can favour corrosion, while its materials and components have been selected in order to avoid Electrolysis effects.

The use of special surface treatments and stainless steel ensure easy and effective brake maintenance, disassembly and reassembly, after which re-painting is not required.

ID-OS brakes have been tested and certified by external laboratories which report that the brake has a resistance capacity comparable to the C5-M standards.

ID-OS series are spring-applied and designed to operate at working temperatures between -10°C and + 100°C and at a pressure up to 200 bar.

Braking Solutions for Extreme Environments

Freni idraulici diretti serie VL

I freni idraulici ad azionamento diretto, serie ID-VL (Very Low Temperature), sono stati progettati per applicazioni in ambienti a temperature fino a -45°C. Materiali costruttivi, così come guarnizioni, molle e tutte le parti di fissaggio, sono stati selezionati al fine di garantire il corretto funzionamento del freno in situazioni di temperature estreme.

Le soluzioni tecniche adottate nei freni VL sono state testate e certificate da laboratori esterni che confermano l'idoneità ad operare in ambienti estremi. Disponibili in versione negativa, i freni idraulici della serie VL, utilizzano olii minerali tipo ISO VG15 e possono operare in ambienti chiusi o protetti.

Hydraulic direct brakes "VL" series

The direct hydraulic ID-VL series (Very Low Temperature) has been designed for heavy applications in environments with low temperatures up to -45°C. Construction materials, gaskets, springs and all the fixing parts have been chosen to guarantee the perfect functioning of the brake at extreme temperatures.

The Hydraulic VL brakes have been tested and certified by external laboratories, which confirm their suitability to operate in extreme environments.

These Hydraulic spring applied brakes work with mineral oils type ISO VG15 and are designed to operate indoors or protected by carter.

Freni idraulici diretti serie XT

I freni idraulici ad azionamento diretto, serie ID-XT, sono stati progettati per applicazioni in ambienti altamente corrosivi e a temperature fino a -45°C. La scelta e la combinazione di materiali particolarmente resistenti alla corrosione e idonei ad operare a bassissime temperature garantiscono il funzionamento del freno in applicazioni Off-Shore estreme. I trattamenti anticorrosivi speciali ed elementi in acciaio INOX, rendono particolarmente agevole la manutenzione lo smontaggio e il rimontaggio del freno dopo il quale non è richiesta nessuna riverniciatura.

La scelta di materiali costruttivi, guarnizioni, molle e di tutte le parti di fissaggio è stata fatta con lo scopo di garantire l'operatività del freno in situazioni di temperature di lavoro estreme, comprese tra -45°C e +100°C.

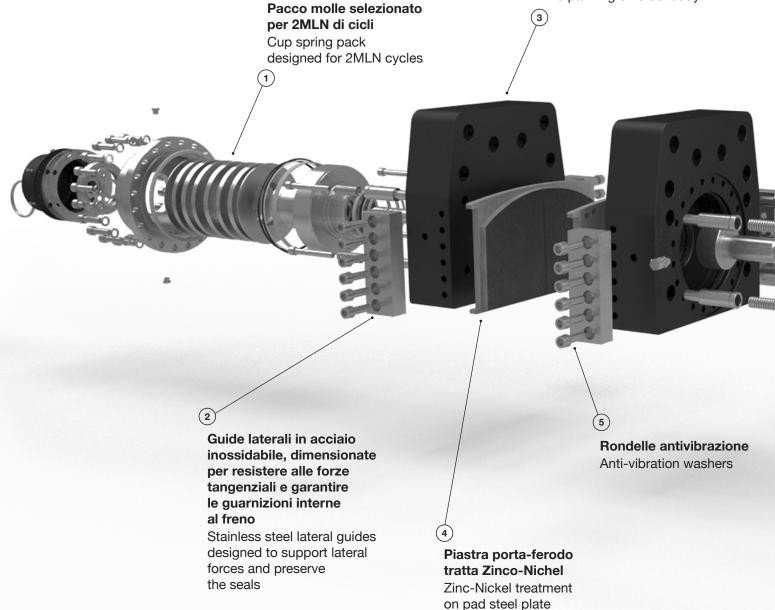
Disponibili in versione negativa, i freni idraulici della serie XT utilizzano olii minerali tipo ISO VG15.

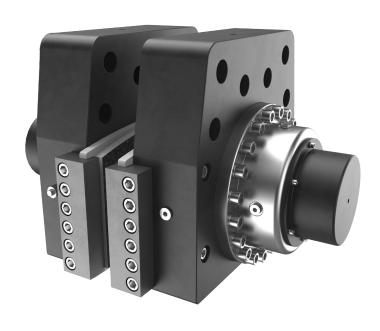
Hydraulic direct brakes "XT" series

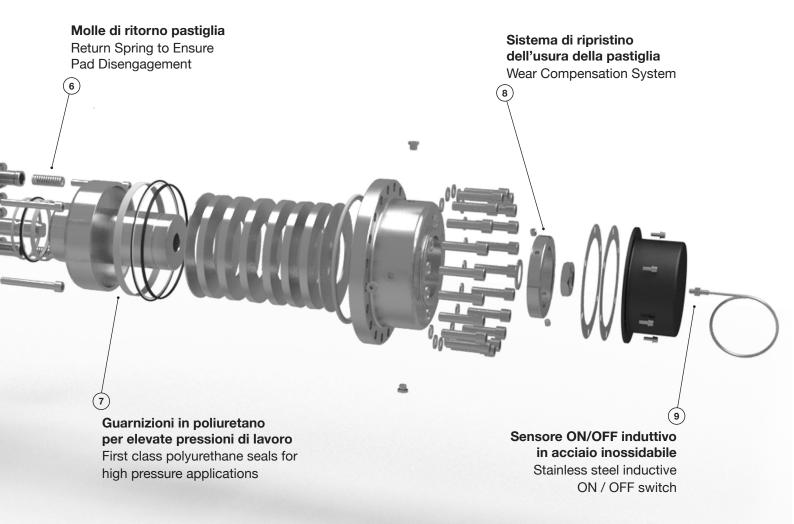
Hydraulic direct ID-XT series has been designed for heavy duty applications in highly corrosive environments and temperatures up to -45°C. The combination of highly corrosion-resistant materials suitable for very low temperatures ensures the correct functioning of these brakes in extreme Off-Shore applications. The use of special anticorrosive treatments and stainless steel, ensures easy brake maintenance, disassembly and reassembly, after which re-painting is not required.

Construction materials, gaskets, springs and all the fixing parts have been chosen to guarantee the correct functioning of the brake in extreme temperatures, between -45 $^{\circ}$ C and + 100 $^{\circ}$ C.

These Hydraulic spring applied brakes series XT work with mineral oils type ISO VG15.


Freni per Ambienti Estremi


I punti di forza di Coremo risiedono nella personalizzazione e nella costante innovazione del prodotto e nell'uso di componenti di alta qualità. I freni sono stati progettati per fornire al mercato una soluzione SEMPLICE, AFFIDABILE e di QUALITA.


Coremo's strong points have always lain in its precise, tailor-made design, constant product innovation and quality of components. The brakes are thought and designed to provide a SIMPLE, HIGH QUALITY and RELIABLE solution to the market.

Trattamento di Zinco-Passivazione del corpo freno e protezione finale zinco lamellare

Zinc-Phosphate coating + Passivation + Multi-Layer zinc painting on steel body

MS Mono-Spinta

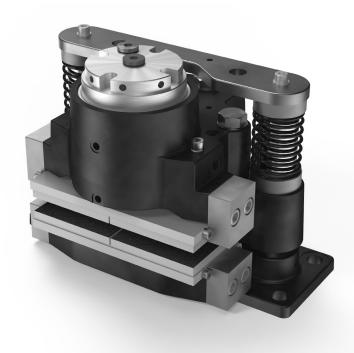
MS Mono-Actuated

- Freni Negativi
 Spring Actuated Brakes
- Per Stazionamento ed Emergenza For Holding and Emergency
- Forze Tangenziali da 8kN to 48kN
 Braking Force Range from 8kN to 48kN
- Temperature ambiente di lavoro da -10°C a +100°C
 Working temperature from -10°C to +100°C
- Oli a base minerale SAE/ISO 46
 Mineral based oils SAE/ISO 46

I freni idraulici mono-spinta, serie ID-MS, sono stati progettati per quelle applicazioni in cui lo spazio di lavoro a disposizione è limitato.

Questi freni sono composti da una semi-pinza attiva, una parte reattiva e una staffa di fissaggio. Nella pinza attiva è ubicato un pacco molle modulare, che permette di ottenere diverse forze frenanti, a seconda del numero, del tipo e della disposizione delle molle applicate. La sua posizione frontale rispetto all'operatore e la presenza di una staffa di fissaggio laterale agevolano il settaggio, il montaggio e la manutenzione del freno.

Disponibili in versione negativa, i freni "ID-MS" possono operare in ambenti chiusi o protetti e a temperature di lavoro comprese tra -10°C e +100°C.

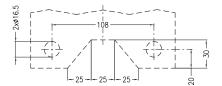

Si raccomanda l'utilizzo di olio a base minerale tipo SAE/ISO 46. È possibile utilizzare olii diversi salvo verifica di compatibilità delle guarnizioni.

The mono-actuated hydraulic brakes, series ID-MS, have been designed for those applications with a limited working space.

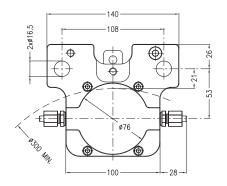
These brakes are composed by an active body, a reactive half and a fixing bracket. The active body, located front-operator, contains a modular spring pack, which allows to reach different braking forces by changing the number, type and arrangement of the springs. Its position as well as the lateral fixing bracket ease mounting, set-up and maintenance operations.

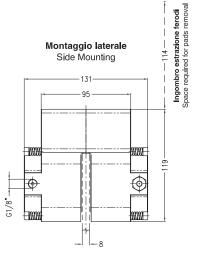
The "ID-MS" series is spring applied; it can operate indoors or protected by carter and at a working temperature from -10°C to +100°C.

The use of mineral oil SAE/ISO46 is recommended. Different oils can be used only after checking the compatibility with the seals.

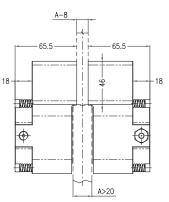

Schede Tecniche

Data Sheets


		Stazionamento Holding	Emergenza Emergency	Tensionamento Tensioning	Ciclica Cyclic	Sup. Pastiglie Ferodo Pads Surface
ID 800 H2 - 8	Pg. 38	-	0	0	0	3.148 [mm²]
ID 800 H2 - 12.7	39	-	0	0	0	3.148 [mm²]
ID 900	40	-	0	0	0	11.277 [mm²]
ID 1500	41	-	0	0	0	23.508 [mm²]
ID 2000 - 50	42	-	0	0	0	32.276 [mm²]
ID 2000 - 100	43	-	0	0	0	32.276 [mm²]
ID 2000 - 200	44		0	0	0	32.276 [mm²]
ID 800N - 8	45	o	0		0	10.821 [mm²]
ID 800N - 13	46	0	0	-	0	10.821 [mm²]
ID 900N - 15	47	<u> </u>	0		0	11.277 [mm²]
ID 900N - 30	48	<u> </u>	0		0	11.277 [mm²]
ID 1500N - 50	49		0		<u> </u>	23.508 [mm²]
ID 1500N - 50 OS	50		0		•	23.508 [mm²]
ID 1500N - 50 VL	51	0	0	-	0	23.508 [mm ²]
ID 1500N - 50 XT	52	0	0	-	0	23.508 [mm ²]
ID 2000N - 47	53		0		0	27.633 [mm²]
ID 2000N - 58	54	0	0		0	27.633 [mm²]
ID 2000N - 116	55	0	0		0	27.633 [mm²]
ID 2000N - 116 0S	56		0	·	<u> </u>	27.633 [mm²]
ID 2000N - 116 VL	57		0	·	<u> </u>	27.633 [mm²]
ID 2000N - 116 XT	58	0	0		0	27.633 [mm²]
ID 2500N - 150	59	0	0		0	42.695 [mm²]
ID 3000N - 200	60	0	0		0	87.308 [mm²]
ID 3000N - 200 OS	61	0	0		0	87.308 [mm²]
ID 3000N - 200 VL	62	0	0	-	0	87.308 [mm²]
ID 3000N - 200 XT	63	0	0	-	0	87.308 [mm²]
ID 3000N - 270	64	0	0	-	o	87.308 [mm²]
ID 3000N - 270 OS	65	0	0	-	o	87.308 [mm²]
ID 3000N - 270 VL	66	0	0	-	o	87.308 [mm²]
ID 3000N - 270 XT	67	0	0	-	0	87.308 [mm²]
ID MS 1000N	68	0	0	-	0	28.285 [mm²]

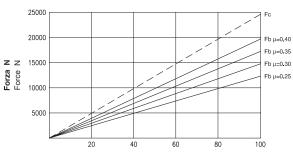

O Adatto Suitable - Non adatto

Unsuitable



Dimensioni base di montaggio Dimensions of mounting base

Montaggio con piastra centrale (*) Mounting with central plate (*)


- (*) Per uso con dischi spessore maggiore di 20 mm le due pinze possono essere montate usando una piastra centrale di spessore = sp. disco 8 mm.
- (*) For use with discs thickness greater than 20 mm the two calipers could be mounted using a central plate of thickness = disc th. 8 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be

Dati Forza / Force data

Pressione Ollo bar / Oil Pressure bar

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N)

from 30% to 50% lower than the nominal value.

Forza di chiusura Fc : 24625 N a 100 bar Forza tangenziale Fb : 19700 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.032

Coppia frenante Mb = Fb · Re (Nm)

Pressione Min. : 3.3 bar Pressione Max : 110 bar Volume olio : 0.06 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo: 0.01 dm³

Peso: 8.2 kg

Spessore del ferodo nuovo: 7.5 mm

Usura Max totale : 10 mm

Technical Data

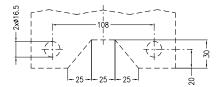
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N)

Clamping force Fc: 24625 N at 100 bar Braking force Fb: 19700 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.032

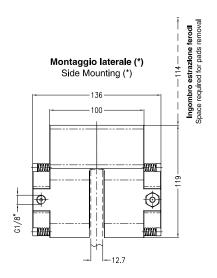
Braking torque $Mb = Fb \cdot Re (Nm)$

Min. pressure : 3.3 bar Max pressure : 110 bar Oil volume : 0.06 dm³


Total oil displacement for 2mm movement of each pad: 0.01 dm³

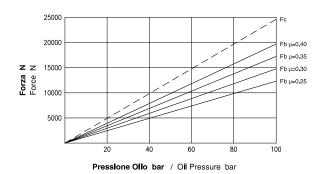
Weight: 8.2 kg

Thickness of new lining: 7.5 mm Max total wear: 10 mm



Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Dimensioni base di montaggio Dimensions of mounting base


- (*) Per dischi con spessore da 14 a 20 mm interporre tra le due pinze un distanziale di spessore = sp. disco 13 mm.
- (*) For discs with thickness from 14 to 20 mm insert between the two caliper halves a spacer of thickness = disc th. 13 mm.

Dati Coppia / Torque data

Diametro Disco mm / Disc Diameter mm 300 356 406 457 514 610 711 100 80 80 80 40 857 514 610 711 20 750 1500 2250 3000 3750 4500 5250 6000 675 Coppla Frenante Nm / Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu=0.40$ Forza tangenziale Fb = Fc · 2 · μ (N)
Forza di chiusura Fc : 24625 N a 100 bar Forza tangenziale Fb : 19700 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.032

Coppia frenante Mb = Fb · Re (Nm)

Pressione Min. : 3.3 bar Pressione Max : 110 bar Volume olio : 0.06 dm³

Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.01 dm³

Peso: 8.2 kg

Spessore del ferodo nuovo : 7.5 mm

Usura Max totale : 10 mm

Technical Data

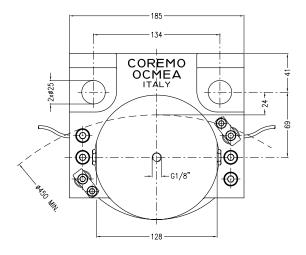
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N)

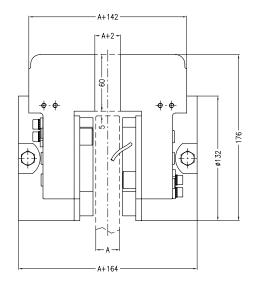
Clamping force Fc: 24625 N at 100 bar Braking force Fb: 19700 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.032

Braking torque $Mb = Fb \cdot Re (Nm)$

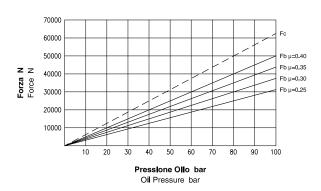
Min. pressure : 3.3 bar Max pressure : 110 bar Oil volume : 0.06 dm³


Total oil displacement for 2mm movement of each pad: 0.01 dm³


Weight: 8.2 kg

Thickness of new lining: 7.5 mm Max total wear: 10 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 2 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 2 mm.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 100 100 100 100 1000 15000 10000 15000 20000 25000 30000 35000 Coppla Frenante Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu=0.40$ Forza tangenziale $Fb=Fc\cdot 2\cdot \mu$ (N) Forza di chiusura Fc:62500 N a 100 bar Forza tangenziale Fb:50000 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.054

Coppla frenante Mb = Fb · Re (Nm)

Pressione Min.: 2.6 bar Pressione Max: 100 bar Volume ollo totale: 0.2 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo: 0.026 dm³

Peso: 25.6 kg

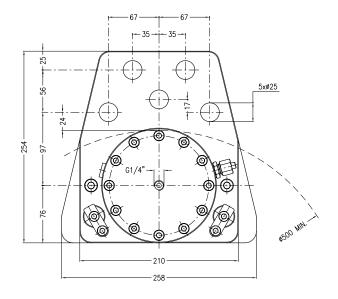
Spessore del ferodo nuovo : 14 mm Usura Max totale : 14 mm

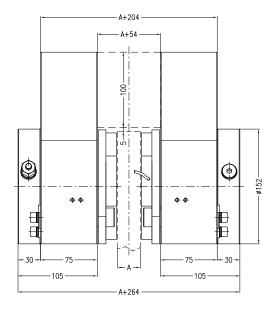
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N) Clamping force Fc : 62500 N at 100 bar Braking force Fb : 50000 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.054

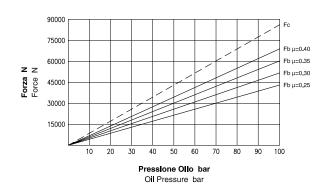
Braking torque Mb = Fb Re (Nm)


Min. pressure: 2.6 bar Max pressure: 100 bar Total oil volume: 0.2 dm³ Total oil displacement for 2mm movement of each pad: 0.026 dm³


Weight: 25.6 kg

Thickness of new lining: 14 mm Max total wear: 14 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 54 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 54 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu=0.40$ Forza tangenziale Fb = Fc \cdot 2 \cdot μ (N) Forza di chiusura Fc : 86250 N a 100 bar Forza tangenziale Fb : 69000 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.0725

Coppla frenante Mb = Fb · Re (Nm)

Pressione Min.: 9 bar Pressione Max: 120 bar Volume olio totale: 0.35 dm³ Volume olio per uno spostamento dl 2mm per clascun ferodo: 0.036 dm³

Peso: 70.8 kg

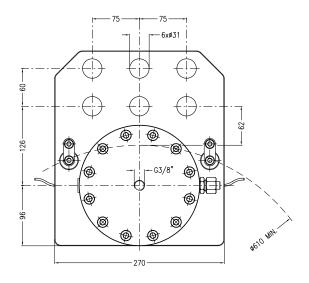
Spessore del ferodo nuovo : 14 mm Usura Max totale : 18 mm

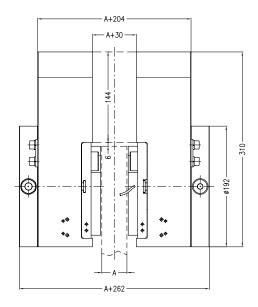
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 86250 N at 100 bar Braking force Fb : 69000 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.0725

Braking torque Mb = Fb Re (Nm)

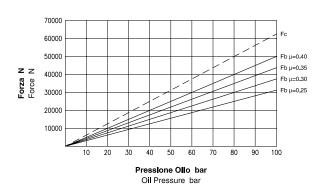

Min. pressure : 9 bar Max pressure : 120 bar Total oil volume : 0.35 dm³ Total oil displacement for 2mm movement of each pad : 0.036 dm³


Weight: 70.8 kg

Thickness of new lining: 14 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 30 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 30 mm.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 100 Pressione Olio bar Oil Pressure bar 40 20 5000 10000 15000 20000 25000 30000 35000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc \cdot 2 \cdot μ (N) Forza di chiusura Fc: 62500 N a 100 bar Forza tangenziale Fb: 50000 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.071

Coppla frenante Mb = Fb · Re (Nm)

Pressione Min.: 6.4 bar Pressione Max: 120 bar Volume olio totale: 0.35 dm3 Volume olio per uno spostamento dl 2mm per clascun ferodo: 0.026 dm3

Peso: 116.2 kg

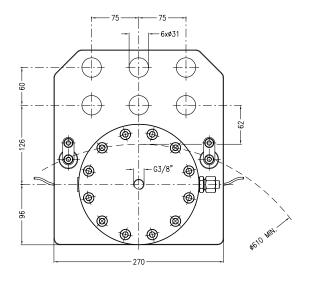
Spessore del ferodo nuovo: 15 mm Usura Max totale: 18 mm

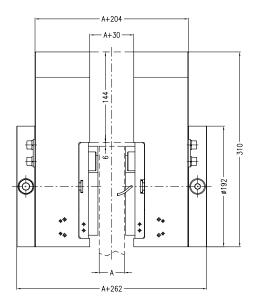
Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc \cdot 2 \cdot \mu$ (N) Clamping force Fc: 62500 N at 100 bar Braking force Fb: 50000 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.071

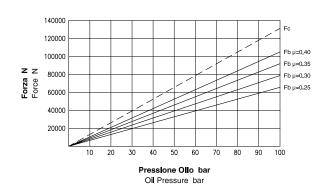
Braking torque $Mb = Fb \cdot Re (Nm)$


Min. pressure: 6.4 bar Max pressure : 120 bar Total oil volume: 0.35 dm3 Total oil displacement for 2mm movement of each pad: 0.026 dm3


Weight: 116.2 kg

Thickness of new lining: 15 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 30 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 30 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 131250 N a 100 bar Forza tangenziale Fb : 105000 N a 100 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.071

Coppla frenante Mb = Fb · Re (Nm)

Pressione Min. : 3 bar Pressione Max : 200 bar Volume olio totale : 0.73 dm³ Volume olio per uno spostamento dl 2mm per clascun ferodo : 0.054 dm³

Peso: 113.6 kg

Spessore del ferodo nuovo : 15 mm

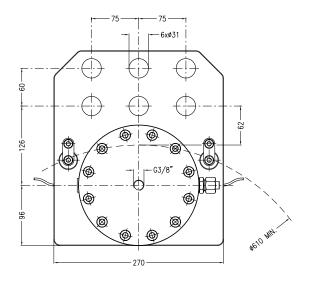
Usura Max totale : 18 mm

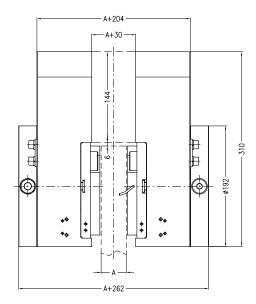
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 131250 N at 100 bar Braking force Fb : 105000 N at 100 bar

Effective disc radius Re = Disc radius (m) - 0.071

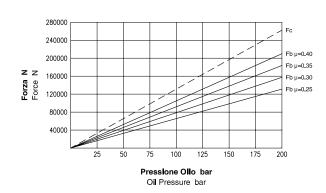
Braking torque $Mb = Fb \cdot Re (Nm)$


Min. pressure : 3 bar Max pressure : 200 bar Total oil volume : 0.73 dm³ Total oil displacement for 2mm movement of each pad : 0.054 dm³


Weight: 113.6 kg

Thickness of new lining: 15 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 30 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 30 mm.

Dati Coppia / Torque data

Diametro Disco mm 1220 200 175 Pressione Olio bar Oil Pressure bar 150 125 100 75 50 25 20000 40000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc $\cdot 2 \cdot \mu$ (N) Forza di chiusura Fc: 262500 N a 200 bar

Forza tangenziale Fb: 210000 N a 200 bar

Raggio effettivo disco Re = Raggio disco (m) - 0.071

Coppia frenante Mb = Fb · Re (Nm)

Pressione Min.: 3 bar Pressione Max: 200 bar Volume olio totale: 0.73 dm3 Volume ollo per uno spostamento di 2mm per ciascun ferodo : 0.054 dm³

Peso: 113.6 kg

Spessore del ferodo nuovo: 15 mm Usura Max totale: 18 mm

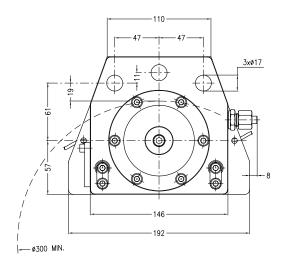
Technical Data

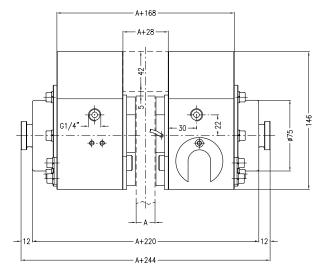
Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc \cdot 2 \cdot \mu$ (N)

Clamping force Fc : 262500 N at 200 bar Braking force Fb: 210000 N at 200 bar

Effective disc radius Re = Disc radius (m) - 0.071

Braking torque Mb = Fb Re (Nm)

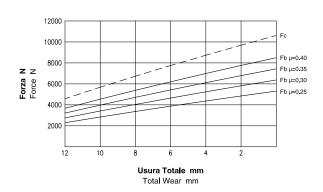

Min. pressure: 3 bar Max pressure: 200 bar Total oil volume: 0.73 dm3 Total oil displacement for 2mm movement of each pad: 0.054 dm³


Weight: 113.6 kg

Thickness of new lining: 15 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 28 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 28 mm

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 10500 N

Raggio effettivo disco Re = Raggio disco (m) - 0.048

Coppla frenante Mb = Fb · Re (Nm)

Forza tangenziale Fb: 8400 N

Pressione minima di apertura : 65 bar Pressione Max : 200 bar

Volume ollo totale : 0.055 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.008 dm³

Peso: 24.6 kg

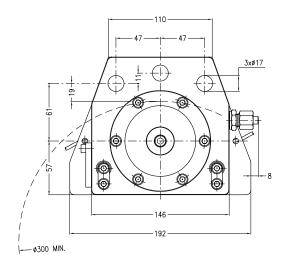
Spessore del ferodo nuovo : 9 mm Usura Max totale : 12 mm

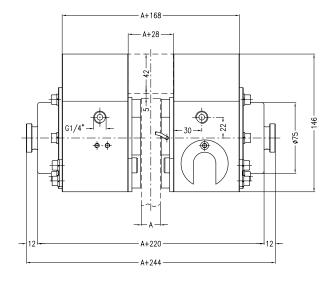
Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force Fb = Fc · 2 · μ (N)

Clamping force Fc: 10500 N Braking force Fb: 8400 N

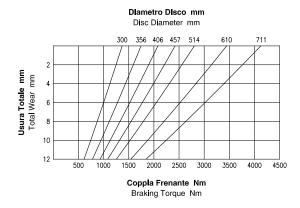
Effective disc radius Re = Disc radius (m) - 0.048 Braking torque Mb = Fb \cdot Re (Nm)


Minimum release pressure: 65 bar Max pressure: 200 bar Total oil volume: 0.055 dm³ Total oil displacement for 2mm movement of each pad: 0.008 dm³

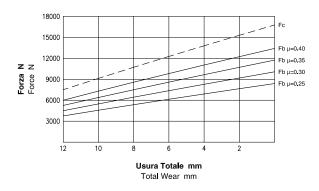

Weight: 24.6 kg

Thickness of new lining: 9 mm Max total wear: 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.



Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 28 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 28 mm.

Dati Coppia / Torque data

Attenzione: La coppla Iniziale può essere Inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N)

Forza di chiusura Fc : 16625 N Forza tangenziale Fb : 13300 N

Raggio effettivo disco Re = Raggio disco (m) - 0.048

Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 100 bar

Pressione Max : 200 bar Volume olio totale : 0.055 dm³ Volume ollo per uno spostamento dl 2mm per clascun ferodo : 0.008 dm³

Peso: 24.6 kg

Spessore del ferodo nuovo : 9 mm Usura Max totale : 12 mm

Technical Data

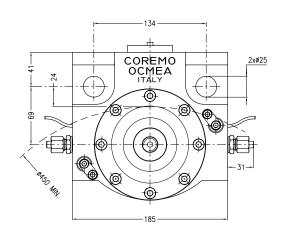
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N) Clamping force Fc : 16625 N

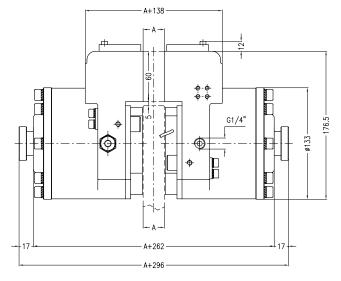
Braking force Fb : 13300 N

Effective disc radius Re = Disc radius (m) - 0.048 Braking torque Mb = Fb · Re (Nm)

Minimum release pressure : 100 bar Max pressure : 200 bar

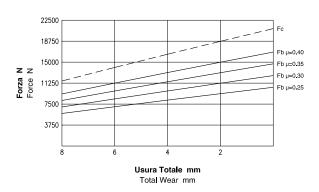
Total oil volume: 0.055 dm³


Total oil displacement for 2mm movement of each pad: 0.008 dm³


Weight: 24.6 kg

Thickness of new lining : 9 mm Max total wear : 12 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco. The thickness of the central mounting bracket must be equal to the disc thickness.

Dati Coppia / Torque data

Pisc Diameter mm Disc Diameter mm Disc Diameter mm Disc Diameter mm A 50 500 610 760 915 1065 1220 1370 450 500 610 760 915 1065 1220 1370 450 500 610 760 915 1065 1220 1370 450 500 610 760 915 1065 1220 1370 Example 1 1065 1220 1370 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 21000 N Forza tangenziale Fb : 16800 N

Raggio effettivo disco Re = Raggio disco (m) - 0.054 Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 55 bar Pressione Max : 200 bar Volume olio totale : 0.14 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.021 dm³

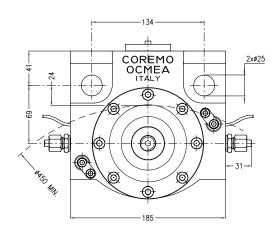
Peso: 34.4 kg

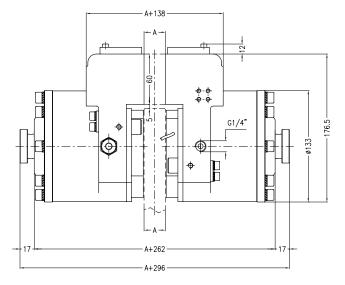
Spessore del ferodo nuovo : 14 mm Usura Max totale : 20 mm

Technical Data

Nominal friction coefficient $~\mu=0.40$ Braking force $~Fb=Fc\cdot 2\cdot \mu~(N)$ Clamping force ~Fc:21000~N Braking force ~Fb:16800~N

Effective disc radius Re = Disc radius (m) - 0.054 Braking torque Mb = Fb Re (Nm)

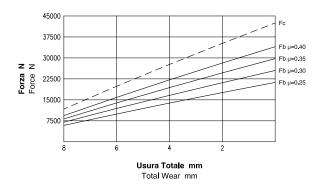

Minimum release pressure: 55 bar Max pressure: 200 bar Total oil volume: 0.14 dm³ Total oil displacement for 2mm movement of each pad: 0.021 dm³


Weight: 34.4 kg

Thickness of new lining: 14 mm Max total wear: 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Lo spessore del supporto centrale deve essere uguale allo spessore del disco.


The thickness of the central mounting bracket must be equal to the disc thickness

Dati Coppia / Torque data

Diameter Disco mm Disc Diameter mm 450 500 610 760 915 1065 1220 1370 450 500 610 760 915 1065 1220 1370 8 2500 5000 7500 10000 12500 15000 17500 20000 22500 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 42500 N Forza tangenziale Fb : 34000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.054

Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 110 bar

Pressione Max : 200 bar Volume ollo totale : 0.14 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.021 dm³

Peso: 34.4 kg

Spessore del ferodo nuovo : 14 mm

Usura Max totale : 20 mm

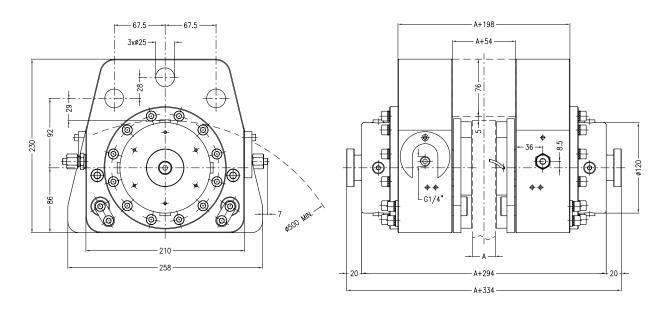
Technical Data

Nominal friction coefficient $\,\mu$ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N)

Clamping force Fc: 42500 N Braking force Fb: 34000 N

Effective disc radius Re = Disc radius (m) - 0.054

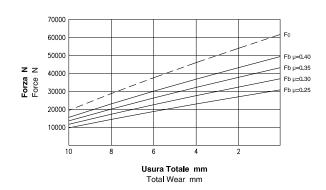
Braking torque $Mb = Fb \cdot Re \ (Nm)$ Minimum release pressure : 110 bar


Max pressure : 200 bar Total oil volume : 0.14 dm³ Total oil displacement for 2mm movement of each pad : 0.021 dm³

Weight: 34.4 kg

Thickness of new lining: 14 mm Max total wear: 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 54 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 54 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 61625 N Forza tangenziale Fb : 49300 N

Raggio effettivo disco Re = Raggio disco (m) - 0.0725 Coppla frenante Mb = Fb \cdot Re (Nm)

Pressione minima di apertura : 120 bar Pressione Max : 200 bar Volume olio totale : 0.15 dm³

Volume olio per uno spostamento dl 2mm per clascun ferodo : 0.025 dm³ Peso : 66.6 kg

Spessore del ferodo nuovo : 14 mm Usura Max totale : 18 mm

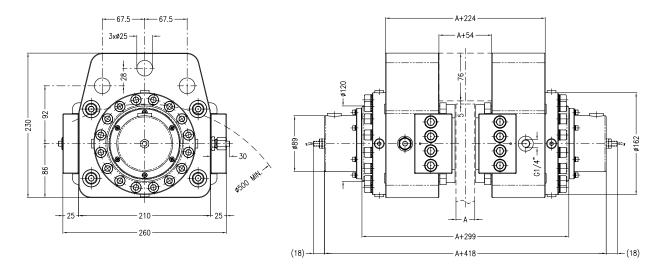
Technical Data

Nominal friction coefficient $\,\mu$ = 0.40 Braking force $\,$ Fb = Fc \cdot $2 \cdot \mu$ (N) Clamping force $\,$ Fc \cdot 61625 N Braking force $\,$ Fb \cdot 49300 N

Effective disc radius Re = Disc radius (m) - 0.0725 Braking torque Mb = Fb Re (Nm)

Minimum release pressure : 120 bar Max pressure : 200 bar Total oil volume : 0.15 dm³ Total oil displacement for 2mm

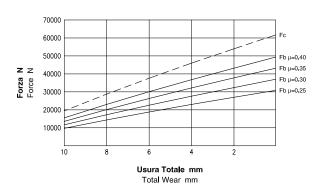
movement of each pad: 0.025 dm3


Weight: 66.6 kg

Thickness of new lining: 14 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

OFFSHORE


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 54 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 54 mm.

Dati Coppia / Torque data

Diameter Disco mm Disc Diameter mm Disc Diameter mm Disc Diameter mm Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N)

Forza di chiusura Fc : 61625 N Forza tangenziale Fb : 49300 N

Raggio effettivo disco Re = Raggio disco (m) - 0.063

Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 120 bar

Pressione Max : 200 bar Volume ollo totale : 0.11 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.025 dm³

Peso: 72.5 kg

Spessore del ferodo nuovo : 14 mm Usura Max totale : 18 mm

Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N) Clamping force Fc : 61625 N

Braking force Fb : 49300 N

Effective disc radius Re = Disc radius (m) - 0.063 Braking torque Mb = Fb · Re (Nm)

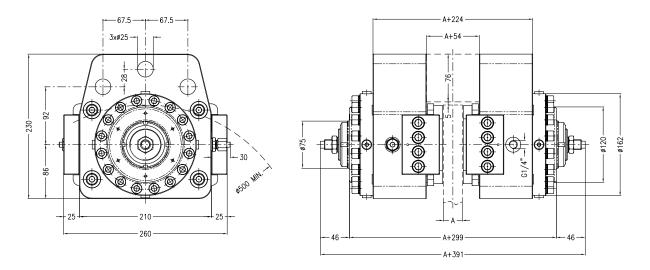
Minimum release pressure : 120 bar Max pressure : 200 bar

Total oil volume : 0.11 dm³

Total oil displacement for 2mm movement of each pad : 0.025 dm³

Weight: 72.5 kg

Thickness of new lining: 14 mm Max total wear: 18 mm



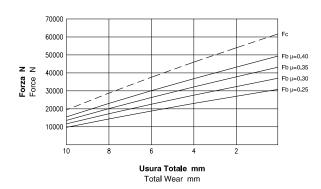
Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

ID 1500N 50 VL

Freno Idraulico ad Azionamento Diretto - Negativo Direct Hydraulic Brake - Spring Applied

SPECIAL -45°C

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 54 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 54 mm

Dati Coppia / Torque data

Diameter Disco mm Disc Diameter mm Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N) Forza di chiusura $\,$ Fc : 61625 N

Raggio effettivo disco Re = Raggio disco (m) - 0.063

Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 120 bar

Forza tangenziale Fb: 49300 N

Pressione Max : 200 bar Volume ollo totale : 0.11 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.025 dm³

Peso: 71.2 kg

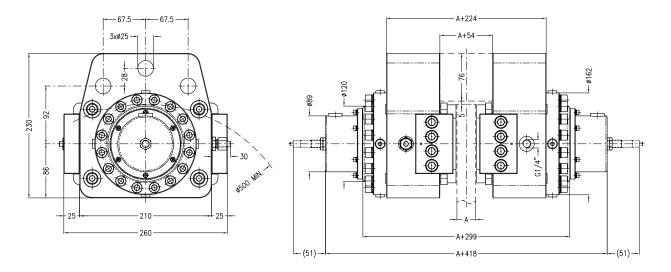
Spessore del ferodo nuovo : 14 mm Usura Max totale : 18 mm

Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 61625 N Braking force Fb : 49300 N

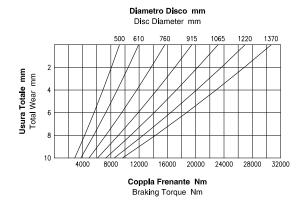
Effective disc radius Re = Disc radius (m) - 0.063 Braking torque Mb = Fb \cdot Re (Nm)

Minimum release pressure: 120 bar Max pressure: 200 bar Total oil volume: 0.11 dm³ Total oil displacement for 2mm movement of each pad: 0.025 dm³

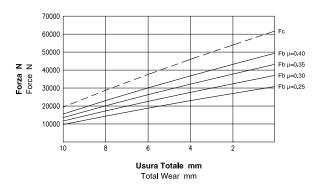

Weight: 71.2 kg

Thickness of new lining: 14 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


OFFSHORE / -45°C

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 54 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 54 mm

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ (N)

Forza di chiusura Fc : 61625 N Forza tangenziale Fb : 49300 N

Raggio effettivo disco Re = Raggio disco (m) - 0.063 Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 120 bar

Pressione Max : 200 bar Volume olio totale : 0.11 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.025 dm³

Peso: 72.5 kg

Spessore del ferodo nuovo : 14 mm Usura Max totale : 18 mm

Technical Data

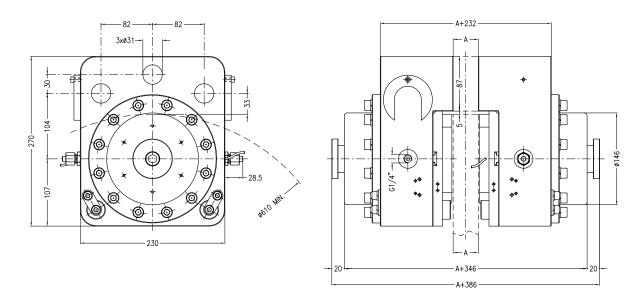
Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 61625 N

Braking force Fb : 49300 N

Effective disc radius Re = Disc radius (m) - 0.063

Braking torque $Mb = Fb \cdot Re (Nm)$

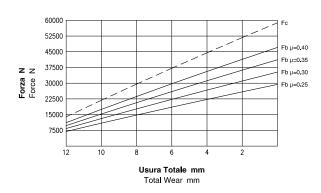
Minimum release pressure : 120 bar Max pressure : 200 bar


Total oil volume : 0.11 dm³ Total oil displacement for 2mm movement of each pad : 0.025 dm³

Weight: 72.5 kg

Thickness of new lining: 14 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco. The thickness of the central mounting bracket must be equal to the disc thickness.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 1065 1220 Usura Totale mm E Total Wear 15000 18750 22500 26250 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc $\cdot 2 \cdot \mu$ (N) Forza di chiusura Fc: 58750 N Forza tangenziale Fb: 47000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.071 Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 85 bar Pressione Max: 220 bar Volume olio totale: 0.26 dm3 Volume ollo per uno spostamento di 2mm per ciascun ferodo : 0.037 dm³

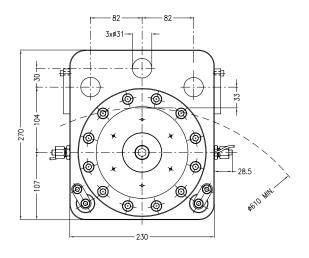
Peso: 114.8 kg

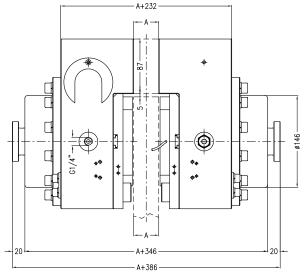
Spessore del ferodo nuovo: 15 mm Usura Max totale : 20 mm

Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc \cdot 2 \cdot \mu$ (N) Clamping force Fc: 58750 N Braking force Fb: 47000 N

Effective disc radius Re = Disc radius (m) - 0.071 Braking torque Mb = Fb Re (Nm)

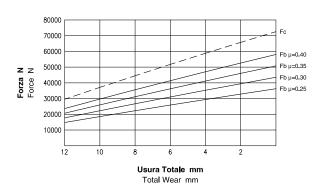

Minimum release pressure: 85 bar Max pressure: 220 bar Total oil volume: 0.26 dm3 Total oil displacement for 2mm movement of each pad: 0.037 dm³


Weight: 114.8 kg

Thickness of new lining: 15 mm Max total wear: 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Lo spessore del supporto centrale deve essere uguale allo spessore del disco.


The thickness of the central mounting bracket must be equal to the disc thickness.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 72500 N Forza tangenziale Fb : 58000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.071 Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 100 bar Pressione Max : 220 bar

Volume ollo totale : 0.26 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.037 dm³

Peso: 115.1 kg

Spessore del ferodo nuovo : 15 mm Usura Max totale : 20 mm

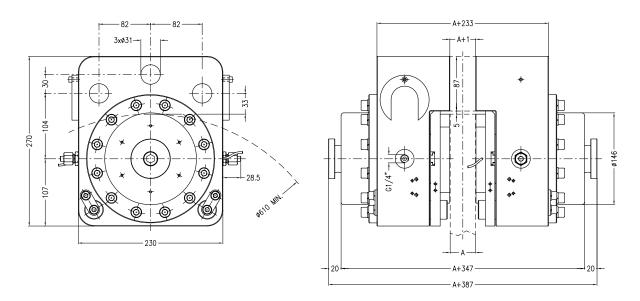
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N) Clamping force Fc : 72500 N

Braking force Fb : 58000 N

Effective disc radius Re = Disc radius (m) - 0.071 Braking torque Mb = Fb \cdot Re (Nm)

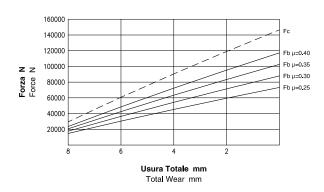
Minimum release pressure : 100 bar Max pressure : 220 bar


Total oil volume : 0.26 dm³
Total oil displacement for 2mm
movement of each pad : 0.037 dm³

Weight 115.1 kg

Thickness of new lining: 15 mm Max total wear: 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 1 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 1 mm.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 610 1220 Usura Totale mm Total Wear mm 20000 40000 50000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc · 2 · µ (N)

Forza di chiusura Fc: 145000 N (146250 N max) Forza tangenziale Fb: 116000 N (117000 N max)

Raggio effettivo disco Re = Raggio disco (m) - 0.071 Coppia frenante Mb = Fb Re (Nm)

Pressione minima di apertura : 200 bar

Pressione Max: 220 bar Volume olio totale: 0.26 dm3 Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.037 dm³

Peso: 115.6 kg

Spessore del ferodo nuovo: 15 mm

Usura Max totale : 20 mm

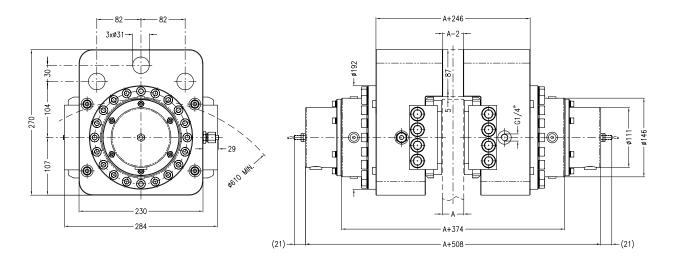
Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc \cdot 2 \cdot \mu$ (N)

Clamping force Fc: 145000 N (146250 N max) Braking force Fb: 116000 N (117000 N max) Effective disc radius Re = Disc radius (m) - 0.071

Braking torque Mb = Fb Re (Nm)

Minimum release pressure: 200 bar Max pressure: 220 bar Total oil volume: 0.26 dm3 Total oil displacement for 2mm movement of each pad: 0.037 dm³

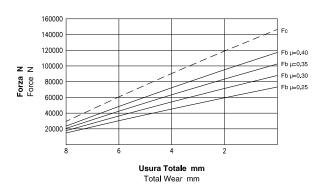

Weight: 115.6 kg

Thickness of new lining: 15 mm Max total wear : 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

OFFSHORE

Lo spessore del supporto centrale deve essere uguale allo spessore del disco MENO 2 mm.


The thickness of the central mounting bracket must be equal to the disc thickness MINUS 2 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 145000 N (146250 N max) Forza tangenzlale Fb : 116000 N (117000 N max)

Ragglo effettivo disco Re = Ragglo disco (m) - 0.071 Coppia frenante Mb = Fb \cdot Re (Nm)

Pressione minima di apertura : 200 bar Presslone Max : 220 bar Volume olio totale : 0.24 dm³ Volume ollo per uno spostamento di 2mm per ciascun ferodo : 0.037 dm³

Peso: 127.6 kg

Spessore del ferodo nuovo : 15 mm Usura Max totale : 20 mm

Technical Data

Nominal friction coefficient $\,\mu$ = 0.40 Braking force Fb = Fc \cdot 2 \cdot μ (N)

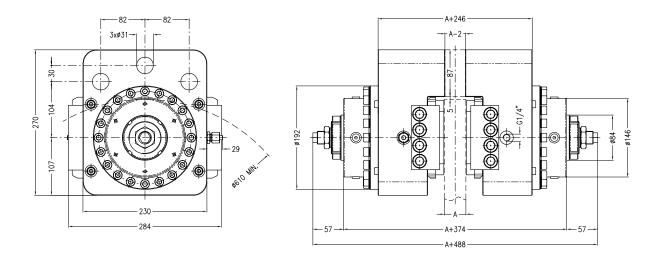
Clamping force Fc: 145000 N (146250 N max)
Braking force Fb: 116000 N (117000 N max)
Effective disc radius Re = Disc radius (m) - 0.071

Braking torque Mb = Fb · Re (Nm)

Minimum release pressure : 200 bar Max pressure : 220 bar

Total oil volume : 0.24 dm³

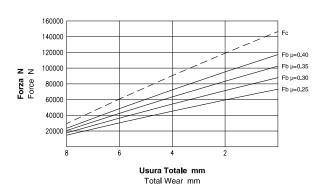
Total oil displacement for 2mm
movement of each pad : 0.037 dm³


Weight: 127.6 kg

Thickness of new lining: 15 mm Max total wear: 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

SPECIAL -45°C


Lo spessore del supporto centrale deve essere uguale allo spessore del disco MENO 2 mm. The thickness of the central mounting bracket must be equal to the disc thickness MINUS 2 mm.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 610 760 915 1065 1220 1370 Fig. 1 1000 2000 30000 40000 50000 60000 70000 80000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 145000 N (146250 N max) Forza tangenziale Fb : 116000 N (117000 N max)

Raggio effettivo disco Re = Raggio disco (m) - 0.071 Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 200 bar

Pressione Max : 220 bar Volume ollo totale : 0.24 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.037 dm³

Peso: 125.6 kg

Spessore del ferodo nuovo : 15 mm Usura Max totale : 20 mm

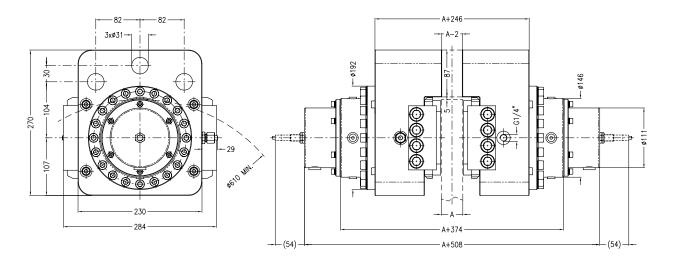
Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force Fb = Fc · 2 · μ (N)

Clamping force Fc: 145000 N (146250 N max)
Braking force Fb: 116000 N (117000 N max)
Effective disc radius Re = Disc radius (m) - 0.071

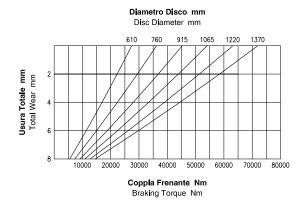
Braking torque Mb = Fb · Re (Nm)

Minimum release pressure: 200 bar Max pressure: 220 bar Total oil volume: 0.24 dm³ Total oil displacement for 2mm movement of each pad: 0.037 dm³

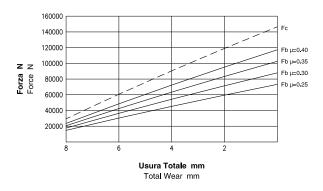

Weight: 125.6 kg

Thickness of new lining: 15 mm Max total wear: 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


OFFSHORE / -45°C

Lo spessore del supporto centrale deve essere uguale allo spessore del disco MENO 2 mm.


The thickness of the central mounting bracket must be equal to the disc thickness MINUS 2 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc · 2 · μ (N)

Forza dl chlusura Fc : 145000 N (146250 N max) Forza tangenziale Fb : 116000 N (117000 N max)

Raggio effettivo disco Re = Raggio disco (m) - 0.071 Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 200 bar Pressione Max : 220 bar Volume olio totale : 0.24 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.037 dm³

Peso: 127.6 kg

Spessore del ferodo nuovo : 15 mm Usura Max totale : 20 mm

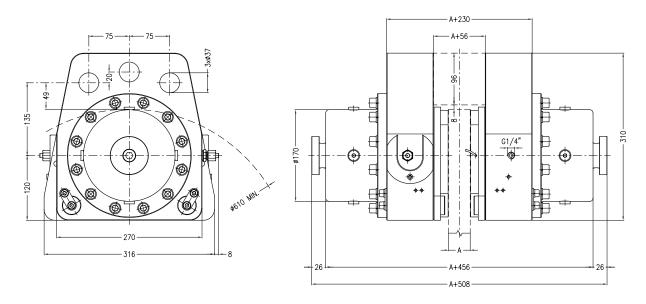
Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force Fb = Fc · 2 · μ (N)

Clamping force Fc: 145000 N (146250 N max)
Braking force Fb: 116000 N (117000 N max)
Effective disc radius Re = Disc radius (m) - 0.071

Braking torque Mb = Fb · Re (Nm)

Minimum release pressure : 200 bar Max pressure : 220 bar Total oil volume : 0.24 dm³

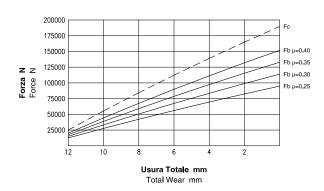

Total oil displacement for 2mm movement of each pad: 0.037 dm³

Weight: 127.6 kg

Thickness of new lining : 15 mm Max total wear : 20 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 56 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 56 mm

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 610 760 915 1065 1220 1370 610 760 915 1065 1220 90000 12 15000 30000 45000 60000 75000 900000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 187500 N Forza tangenziale Fb : 150000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.101 Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 180 bar Pressione Max : 220 bar Volume ollo totale : 0.29 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.056 dm³

Peso: 160 kg

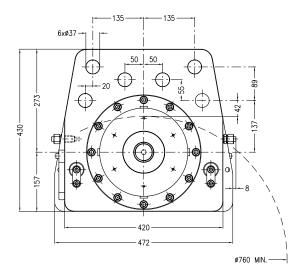
Spessore del ferodo nuovo : 14 mm Usura Max totale : 18 mm

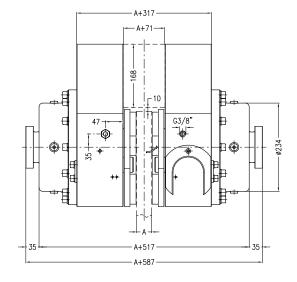
Technical Data

Nominal friction coefficient $\,\mu=0.40$ Braking force $\,Fb=Fc\cdot 2\cdot \mu\,$ (N) Clamping force $\,Fc:187500$ N Braking force $\,Fb:150000$ N

Effective disc radius Re = Disc radius (m) - 0101 Braking torque Mb = Fb \cdot Re (Nm)

Minimum release pressure: 180 bar Max pressure: 220 bar Total oil volume: 0.29 dm³ Total oil displacement for 2mm

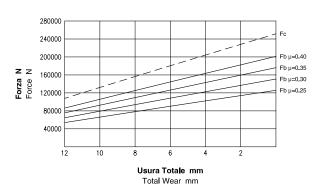

movement of each pad: 0.056 dm3


Weight: 160 kg

Thickness of new lining: 14 mm Max total wear: 18 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 71 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 71 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rIspetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 250000 N Forza tangenziale Fb : 200000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124 Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 115 bar Pressione Max : 200 bar Volume ollo totale : 1.3 dm³

Volume ollo totale : 1.3 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.11 dm³

Peso: 422 kg

Spessore del ferodo nuovo : 16 mm Usura Max totale : 24 mm

Technical Data

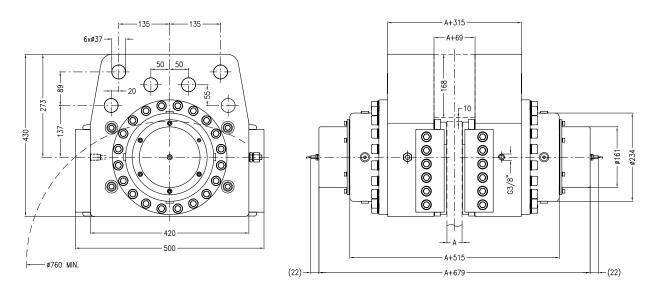
Nominal friction coefficient $~\mu=0.40$ Braking force $~Fb=Fc\cdot 2\cdot \mu~(N)$ Clamping force ~Fc:250000~N Braking force ~Fb:200000~N

Effective disc radius Re = Disc radius (m) - 0.124

Braking torque Mb = Fb · Re (Nm) Minimum release pressure : 115 bar Max pressure : 200 bar

Total oil volume: 1.3 dm³

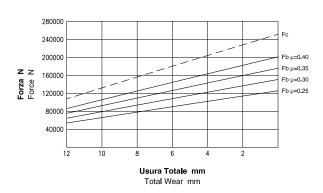
Total oil displacement for 2mm movement of each pad: 0.11 dm³


Weight: 422 kg

Thickness of new lining: 16 mm Max total wear: 24 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

OFFSHORE


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 69 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 69 mm.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm Usura Totale mm Total Wear mm 20000 40000 80000 100000 120000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc \cdot 2 \cdot μ (N) Forza di chiusura Fc: 250000 N Forza tangenziale Fb: 200000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124 Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 115 bar Pressione Max: 200 bar Volume olio totale: 1.02 dm3 Volume olio per uno spostamento di 2mm per clascun ferodo : 0.11 dm³

Peso: 449.7 kg

Spessore del ferodo nuovo: 16 mm

Usura Max totale: 24 mm

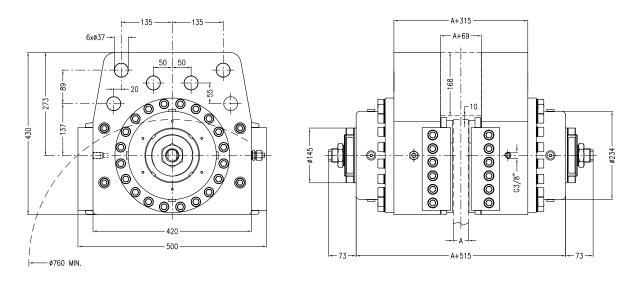
Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc \cdot 2 \cdot \mu$ (N) Clamping force Fc: 250000 N Braking force Fb: 200000 N

Effective disc radius Re = Disc radius (m) - 0.124

Braking torque Mb = Fb Re (Nm) Minimum release pressure: 115 bar Max pressure : 200 bar

Total oil volume: 1.02 dm3 Total oil displacement for 2mm movement of each pad: 0.11 dm³

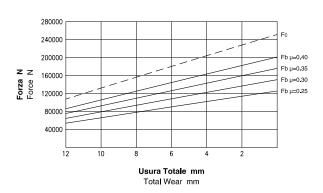

Weight: 449.7 kg

Thickness of new lining: 16 mm Max total wear : 24 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

SPECIAL -45°C

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 69 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 69 mm.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm Usura Totale mm Total Wear mm 20000 40000 80000 100000 120000 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc $\cdot 2 \cdot \mu$ (N)

Forza di chiusura Fc: 250000 N Forza tangenziale Fb: 200000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124 Coppia frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 115 bar Pressione Max: 200 bar

Volume olio totale: 1.02 dm3 Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.11 dm³

Peso: 444 kg

Spessore del ferodo nuovo: 16 mm

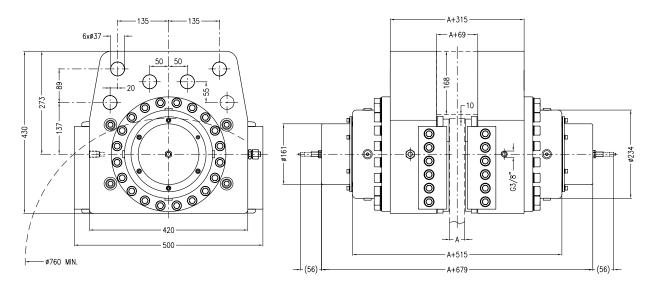
Usura Max totale: 24 mm

Technical Data

Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc \cdot 2 \cdot \mu$ (N) Clamping force Fc: 250000 N Braking force Fb: 200000 N

Effective disc radius Re = Disc radius (m) - 0.124 Braking torque Mb = Fb Re (Nm)

Minimum release pressure: 115 bar Max pressure : 200 bar Total oil volume: 1.02 dm3 Total oil displacement for 2mm

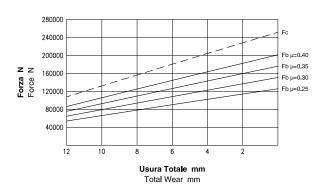

movement of each pad: 0.11 dm3 Weight: 444 kg

Thickness of new lining: 16 mm Max total wear : 24 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

OFFSHORE / -45°C

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 69 mm.


The thickness of the central mounting bracket must be equal to the disc thickness \pm 69 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 250000 N Forza tangenziale Fb : 200000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124 Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 115 bar Pressione Max : 200 bar Volume olio totale : 1.02 dm³ Volume olio per uno spostamento di 2mm per clascun ferodo : 0.11 dm³

Peso: 449.7 kg

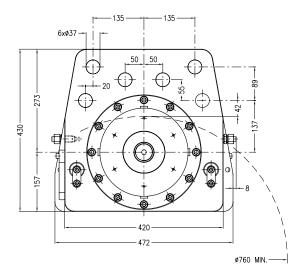
Spessore del ferodo nuovo : 16 mm Usura Max totale : 24 mm

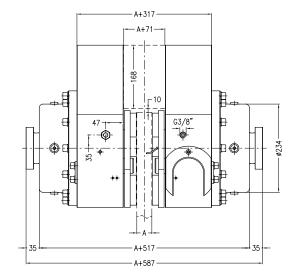
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 250000 N Braking force Fb : 200000 N

Effective disc radius Re = Disc radius (m) - 0.124 Braking torque Mb = Fb \cdot Re (Nm)

Minimum release pressure: 115 bar Max pressure: 200 bar Total oil volume: 1.02 dm³ Total oil displacement for 2mm

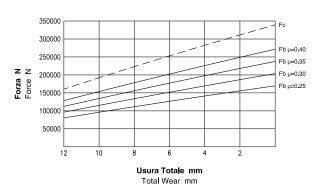

Weight: 449.7 kg


Thickness of new lining: 16 mm Max total wear: 24 mm

movement of each pad: 0.11 dm³

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 71 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 71 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale $\,\mu$ = 0.40 Forza tangenziale $\,$ Fb = Fc \cdot 2 \cdot μ $\,$ (N)

Forza di chiusura Fc : 337500 N Forza tangenziale Fb : 270000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124

Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 150 bar

Pressione Max : 200 bar Volume ollo totale : 1.3 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.11 dm³

Peso: 424 kg

Spessore del ferodo nuovo : 16 mm Usura Max totale : 24 mm

Technical Data

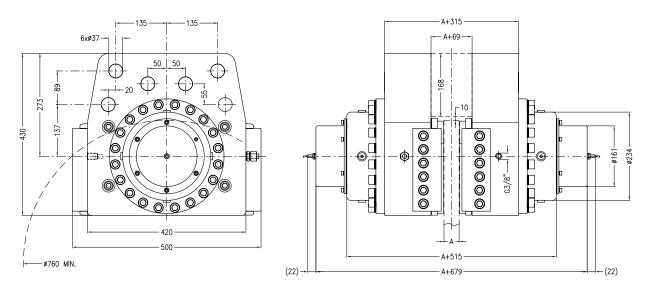
Nominal friction coefficient $\,\mu=0.40$ Braking force $\,Fb=Fc\cdot 2\cdot \mu\,$ (N) Clamping force $\,Fc:337500$ N Braking force $\,Fb:270000$ N

Effective disc radius Re = Disc radius (m) - 0.124 Braking torque Mb = Fb \cdot Re (Nm)

Minimum release pressure : 150 bar Max pressure : 200 bar

Total oil volume: 1.3 dm³

Total oil displacement for 2mm movement of each pad: 0.11 dm³

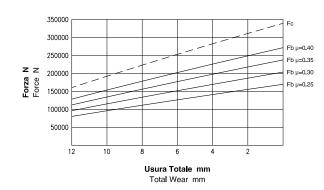

Weight: 424 kg

Thickness of new lining: 16 mm Max total wear: 24 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

OFFSHORE

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 69 mm.


The thickness of the central mounting bracket must be equal to the disc thickness + 69 mm.

Dati Coppia / Torque data

| Diameter Disco mm | Disc Diameter mm | Disc Diame

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 337500 N Forza tangenziale Fb : 270000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124

Coppla frenante Mb = Fb · Re (Nm)

Pressione minima di apertura : 150 bar

Pressione Max : 200 bar

Pressione Max : 200 bar Volume ollo totale : 1.02 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.11 dm³

Peso 451.5 kg

Spessore del ferodo nuovo : 16 mm

Usura Max totale : 24 mm

Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 337500 N Braking force Fb : 270000 N

Effective disc radius Re = Disc radius (m) - 0.124
Braking torque Mb = Fb · Re (Nm)

Minimum release pressure : 150 bar Max pressure : 200 bar Total oil volume : 1.02 dm³

Total oil volume: 1.02 dm³

Total oil displacement for 2mm
movement of each pad: 0.11 dm³

Weight: 451.5 kg

Thickness of new lining : 16 mm Max total wear : 24 mm

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

SPECIAL -45°C

Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 69 mm.

The thickness of the central mounting bracket must be equal to the disc thickness + 69 mm.

Dati Coppia / Torque data

Diametro Disco mm Disc Diameter mm 760 915 1065 1220 1370 1520 4 4 6 10 12 12 1370 1520 Coppla Frenante Nm Braking Torque Nm

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N)

Forza di chiusura Fc : 337500 N Forza tangenziale Fb : 270000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124 Coppia frenante Mb = Fb \cdot Re (Nm)

Pressione minima di apertura : 150 bar Pressione Max : 200 bar

Volume olio totale : 1.02 dm³
Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.11 dm³

Peso: 445.8 kg

Spessore del ferodo nuovo : 16 mm Usura Max totale : 24 mm

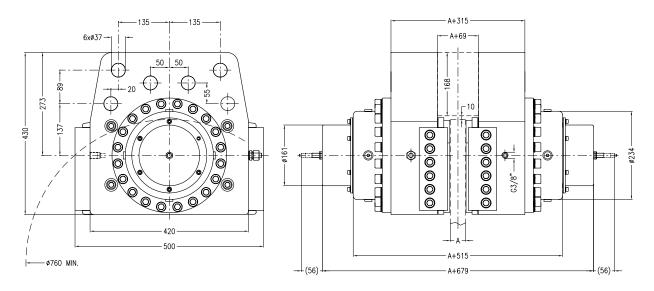
Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 337500 N Braking force Fb : 270000 N

Effective disc radius Re = Disc radius (m) - 0.124 Braking torque Mb = Fb \cdot Re (Nm)

Minimum release pressure: 150 bar Max pressure: 200 bar Total oil volume: 1.02 dm³ Total oil displacement for 2mm

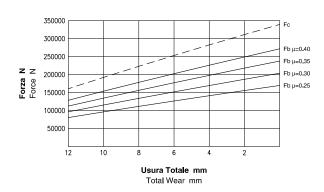
Weight: 445.8 kg


Thickness of new lining: 16 mm Max total wear: 24 mm

movement of each pad: 0.11 dm3

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

OFFSHORE / -45°C


Lo spessore del supporto centrale deve essere uguale allo spessore del disco + 69 mm. The thickness of the central mounting bracket must be equal to the disc thickness + 69 mm.

Dati Coppia / Torque data

Attenzione: La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale. Warning: The initial braking torque can be from 30% to 50% lower than the nominal value.

Dati Forza / Force data

NOTA: Il grafico riporta l'andamento della forza tangenziale al variare del coefficiente di attrito. NOTE: The diagram shows the braking force performance with different friction coefficients.

Dati Tecnici

Coefficiente di attrito nominale μ = 0.40 Forza tangenziale Fb = Fc · 2 · μ (N) Forza di chiusura Fc : 337500 N Forza tangenziale Fb : 270000 N

Raggio effettivo disco Re = Raggio disco (m) - 0.124 Coppia frenante Mb = Fb \cdot Re (Nm)

Pressione minima di apertura : 150 bar Pressione Max : 200 bar Volume olio totale : 1.02 dm³ Volume olio per uno spostamento di 2mm per ciascun ferodo : 0.11 dm³

Peso: 451.5 kg

Spessore del ferodo nuovo : 16 mm Usura Max totale : 24 mm

Technical Data

Nominal friction coefficient μ = 0.40 Braking force Fb = Fc · 2 · μ (N) Clamping force Fc : 337500 N Braking force Fb : 270000 N

Effective disc radius Re = Disc radius (m) - 0.124 Braking torque Mb = Fb \cdot Re (Nm)

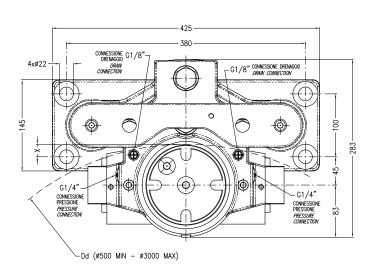
Minimum release pressure : 150 bar Max pressure : 200 bar Total oil valume : 1.02 dm3

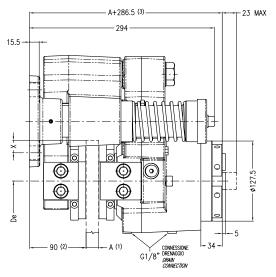
Total oil volume: 1.02 dm³

Total oil displacement for 2mm
movement of each pad: 0.11 dm³

Weight: 451.5 kg

Thickness of new lining: 16 mm Max total wear: 24 mm


Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.


IDMS 1000N

Freno Idraulico Mono Spinta - Negativo Mono Actuated Hydraulic Brake - Spring Applied

Dd mm	= / > 500 = 1000	> 1000 < / = 1400	> 1400 < / = 1700	> 1700 < / = 2200	> 2200 < / = 3000
X mm	20	18	17	16	15
De mm	Dd - 130	Dd - 126	Dd - 124	Dd - 122	Dd - 120

- (1) Spessore disco freno A = 20 mm MIN 40 mm MAX.
- (1) Brake disc thickness A = 20 mm MIN 40 mm MAX.
- (2) 85 MIN 105 MAX con A = 20 / 85 MIN 100 MAX con A = 30 / 85 MIN 95 MAX con A = 40. (2) 85 MIN - 105 MAX whit A = 20 / 85 MIN - 100 MAX whit A = 30 / 85 MIN - 95 MAX whit A = 40.
- (3) +15 MAX con A = 20 / +10 MAX con A = 30 / +5 MAX con A = 40.
- (3) +15 MAX whit A = 20 / +10 MAX whit A = 30 / +5 MAX whit A = 40.

Dati Tecnici / Technical Data

TIPO FRENO BRAKE TYPE	IDMS 1000N-8	IDMS 1000N-16	IDMS 1000N-24	IDMS 1000N-32	IDMS 1000N-48
Diametro Disco Dd Disc Diameter Dd mm	Coppia frenante Mb Braking torque Mb Nm (6)				
500 610 760 915 1000 1065	1480 1920 2520 3140 3480 3756	2960 3840 5040 6280 6960 7512	4440 5760 7560 9420 10440 11268	5920 7680 10080 12560 13920 15024	8880 11520 15120 18840 20880 22536
1220 1370	4376 4976	8752 9952	13128 14928	17504 19904	26256 29856
Forza dl chlusura Fc Clamping force Fc	10000 N	20000 N	30000 N	40000 N	60000 N
Forza tangenziale Fb Braking force Fb	8000 N	16000 N	24000 N	32000 N	48000 N
Perdita di forza per 1 mm (5)	4.2 %	3.0 %	7.5 %	5.2 %	7.4 %
Pressione minima di apertura Minimum opening pressure	20 bar	35 bar	52 bar	66 bar	100 bar
Peso Weight	84.9 ± 0.4 kg	84.9 ± 0.4 kg	85.1 ± 0.4 kg	85.2 ± 0.4 kg	85.3 ± 0.4 kg

- (4) Tutti i valori si basano su 1 mm di gap totale (0.5 mm ogni lato).
- (5) Con una corsa di 1 mm (0.5 mm di usura della pastiglia ferodo ogni lato).
- (6) La coppia iniziale può essere inferiore dal 30% al 50% rispetto al valore nominale.
- (4) All values are based on 1 mm of air gap total (0.5 mm each side).
- (5) With a stroke of 1 mm (0.5 mm wear of brake pad each side).
- (6) The initial braking torque can be from 30% to 50% lower than the nominal value.

Coefficiente di attrito nominale $\mu = 0.40$ Forza tangenziale Fb = Fc \cdot 2 \cdot μ (N) Raggio disco effettivo di frenatura Re = De ÷ 2000 (m)

Coppia frenante Mb = Fb · Re (Nm)

Pressione Max: 200 bar Volume ollo totale: 0.14 dm3

Volume olio totale con corsa di 2 mm per ogni pinza : 0.0138 dm³

Spessore del ferodo nuovo : 12 mm

Usura Max totale: 13 mm (6.5 mm clascun ferodo)

Nominal friction coefficient $\mu = 0.40$ Braking force $Fb = Fc \cdot 2 \cdot \mu$ (N)

Effective braking disc radius Re = De ÷ 2000 (m)

Braking torque Mb = Fb · Re (Nm)

Max pressure: 200 bar Total oil volume: 0.14 dm3

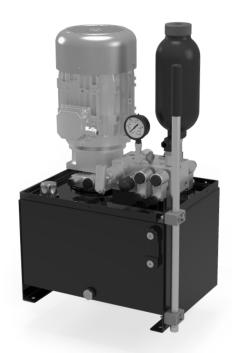
Total oil volume with 2 mm stroke for each caliper: 0.0138 dm³

Thickness of new lining: 12 mm

Max total wear: 13 mm (6.5 mm each pad)

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli sopra riportati è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Dischi Discs



Coremo offre nella sua gamma di prodotti, sia dischi a cappello in ghisa che dischi piatti in acciaio, con o senza mozzo. Tali dischi sono disponibili sia in versione standard che in dimensioni e lavorazioni personalizzate.

In its product range Coremo can supply cast iron hat discs as well as steel flat discs, with or without hub. Such discs are available in standard version or customized in dimensions and machining.

Centraline Idrauliche Hydraulic Power Packs

Le centraline idrauliche Coremo sono state progettate per completare e ottimizzare il sistema di frenatura, rendendolo sicuro ed in accordo con gli standard richiesti dall'applicazione. Tutte le centraline idrauliche possiedono una doppia valvola di sicurezza, un indicatore di livello/ temperatura dell'olio, ed una pompa manuale utilizzabile in caso di mancanza di alimentazione elettrica. Le unità idrauliche sono disponibili sia per freni positivi che per freni negativi.

Engineered to complete the braking system and make it more efficient, safe and suitable for the specific application. All power units have redundant return valves, oil temperature control system and hand operated system to be used in case of power failure. The units are available for both oil-applied and spring-applied hydraulic brakes.

Giunti di Trasmissione Northon **Northon Trasmission Couplings**

Giunti Oscillanti a Denti **Gear Oscillating** Couplings

(Serie Z)

Grandezze da ø 110 a ø 1935 mm. Coppie di trasmissione da 182 a 1570000 daNm

Dimensions from ø 110 to ø 1935 mm. Torque from 182 to 1570000 daNm

Studiati per compensare tutti i disallineamenti angolari e paralleli che si possono riscontrare nel collegamento degli alberi di due

Designed to compensate all the angular and parallel misalignments that may be found connecting the shafts of

Giunti Elastici **Elastic Couplings**

(Serie PN)

Grandezze da ø 60 a ø 1250 mm. Coppie di trasmissione da 3,7 a 35790 daNm

Dimensions from ø 60 to ø 1250 mm. Torque from 3,7 to 35790 daNm

(Serie PSA)

Grandezze da ø 40 a ø 200 mm. Coppie di trasmissione da 1 a 240 daNm

Dimensions from ø 40 to ø 200 mm. Torque from 1 to 240 daNm

(Serie RE)

Grandezze da ø 58 a ø 129 mm. Coppie di trasmissione da 11 a 165 daNm

Dimensions from ø 58 to ø 129 mm. Torque from 11 to 165 daNm

Serie PN

Studiati per assorbire urti torsionali, vibrazioni, e per compensare tutti i disallineamenti angolari e paralleli che si possono riscontrare nel collegamento degli alberi rotanti di due macchine e garantire, nello stesso tempo, la trasmissione della potenza richiesta.

Designed to absorb vibrations and torsional strains; they compensate all the angular and parallel misalignments that may be found connecting the shafts of two machines, ensuring the power transmission.

Serie PSA

Vengono impiegati per accoppiare alberi coassiali. Pur trasmettendo coppie elevate, sono caratterizzati da ingombri minimi e sono perciò consigliati ove si disponga di spazi limitati. Used to connect coaxial shafts, they can be applied where limited space is available: they transmit very high torque occupying small spaces.

Serie RE

Vengono impiegati per il collegamento di alberi coassiali ed offrono grandi vantaggi, quali una perfetta equilibratura dinamica, facilità di smontaggio e sostituzione degli elementi elastici, alluminio antiossidante e ingombri ridotti.

They are applied to connect coaxial shafts and offer great advantages such as near-perfect dynamic balancing, easy dismantling and replacement of the flexible elements, anti-oxidant aluminium and compact dimensions.

Giunti Flessibili a Lamelle Flexible Disc Couplings (Serie FLX)

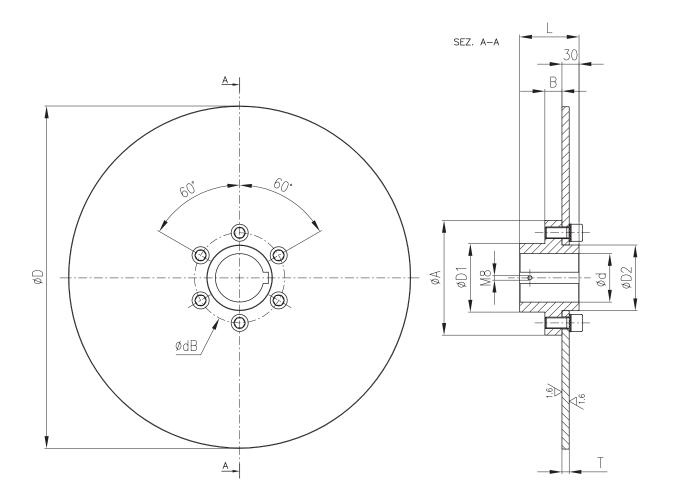
Grandezze da ø 80 a ø 630 mm. Coppie di trasmissione da 10 a 9200 daNm

Dimensions from Ø 80 to Ø 630 mm. Torque from 10 a 9200 daNm

Impiegati per trasmettere il moto tra gli alberi coassiali di due macchine. Torsionalmente rigidi sono in grado di assorbire urti garantendo sicurezza e affidabilità nella trasmissione, anche in presenza di disassamenti angolari, paralleli e allungamenti assiali, con rotazioni indifferentemente destre o sinistre.

Used to transmit the motion between the coaxial shafts of two machines. Torsionally rigid, they absorb strains, ensuring security and reliability even in case of angular and parallel misalignments or axial displacement. They can be applied for both right and left rotations.

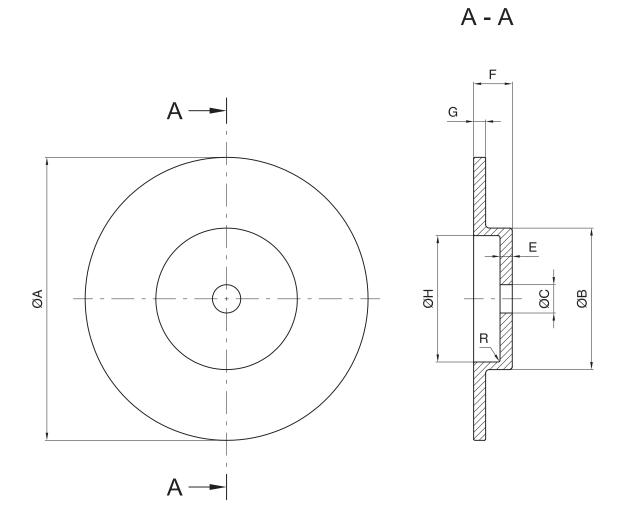
Dischi


Dischi a Cappello in Ghisa Cast Iron Hat Discs

Dischi Piatti, con o senza Mozzo, in Acciaio

Steel Flat Discs, with or without Hub

Coremo offre, nella sua gamma di prodotti, sia dischi a cappello in ghisa, sia dischi piatti, con o senza mozzo, in acciaio. Tali dischi sono disponibili sia in versione standard sia in dimensioni e lavorazioni personalizzate.

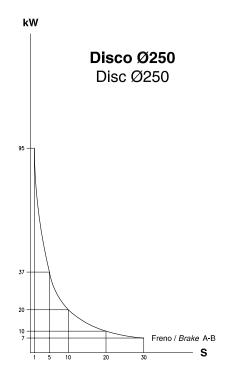

In its product range Coremo can supply cast iron hat discs as well as steel flat discs, with or without hub. Such discs are available in standard version or customized in dimensions and machining.

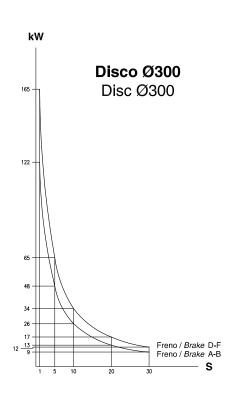
Dischi piatti con mozzo. Dimensioni

Flat Discs with Hub. Dimensions

D	d max	D2	D1	dB	Α	т	В	L	Coppia Max [Nm] Max Torque [Nm]
300	65	85	92	119	148	12.7	24	94	7500
350	65	85	92	119	148	12.7	24	94	7500
400	65	85	92	119	148	12.7	24	94	7500
450	85	115	120	158	201	12.7	30	104	16000
500	85	115	120	158	201	12.7	30	104	16000
500	85	115	120	158	201	25.4	30	104	16000
600	85	115	120	158	201	12.7	30	104	16000
600	85	115	120	158	201	25.4	30	104	16000

Dischi a cappello in ghisa. Dimensioni


Cast Iron Hat Discs. Dimensions


ØΑ	ØВ	Ø C Grezzo Rough Bore	Øн	R	E	F	G	Inerzia Inertia	Max Velocità Max Speed	Peso Weight
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kgm²]	[min ⁻¹]	[kg]
250	100	20	91	1.5	6	36	12.7	0.07	4500	4
250	128	20	120	2	6	36	12.7	0.08	4500	4.2
300	181	30	165	2	13	41	12.7	0.12	3800	7.3
300	150	30	134	2	13	41	12.7	0.10	3800	7.2
356	210	40	175	2	16	54	12.7	0.23	3200	12.5
406	260	44	238	2	16	54	12.7	0.33	2800	15
457	311	44	277	2	16	54	12.7	0.53	2500	21
514	368	44	340	2	16	54	12.7	0.83	2200	25
610	464	44	426	2	16	54	12.7	1.63	1850	37.5
610	343	50	292	6	38	76	25.4	2.9	1850	68
711	565	80	532	2	19	54	12.7	3.63	1400	55
762	495	100	445	7	38	76	25.4	7.4	1500	109

• Capacità termica - Frenata di emergenza

Thermal Capacity - Emergency Braking

I grafici qui sotto riportati sono uno strumento utile per la determinazione del calore in una prima fase della selezione del freno da applicare. Ciò nonostante, si consiglia di verificare il dato ottenuto mediante opportune analisi FEM e/o di contattare l'ufficio tecnico della Coremo per i dovuti accertamenti. The diagrams reported here below are a helpful instrument to determine the heat during an initial step of the brake selection. Nevertheless, it is suggested to verify such data through a FEM analysis and/or to contact Coremo's Technical Dept. for any verification that may be required.

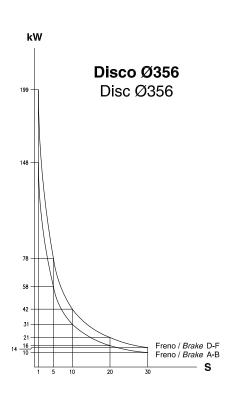
Dati Tecnici Technical Data

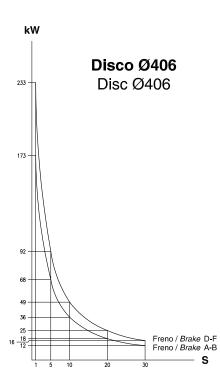
Spessore Thickness

12.7 mm

Materiale

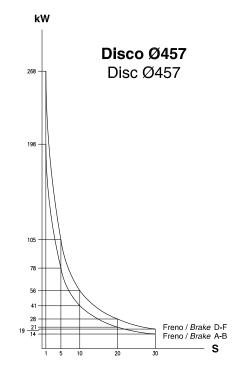
Material

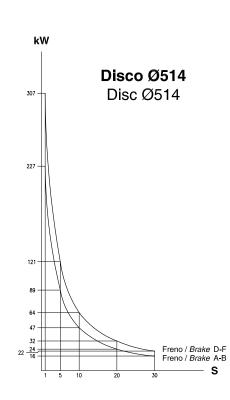

Ghisa Sferoidale


SG Iron

UNI-ISO 1083 - 500.7

Dissipazione di calore con \triangle T = 170° C


Heat Dissipation with \triangle T = 170° C



• Capacità termica - Frenata di emergenza

Thermal Capacity - Emergency Braking

Dati Tecnici Technical Data

Spessore

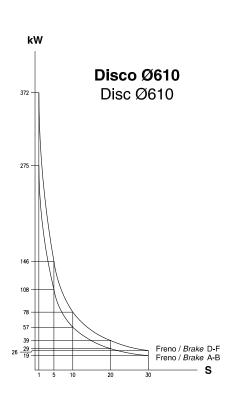
Thickness

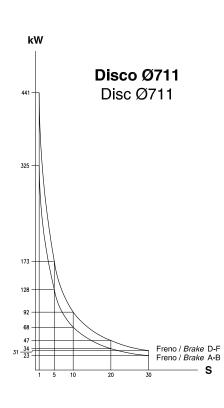
12.7 mm

Materiale

Material

Ghisa Sferoidale


SG Iron


UNI-ISO 1083 - 500.7

Dissipazione di calore con △T = 170° C

Heat Dissipation with

 $\Delta T = 170^{\circ} C$

• Capacità termica - Frenata di emergenza

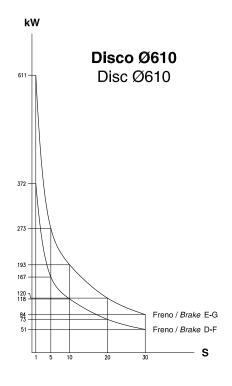
Thermal Capacity - Emergency Braking

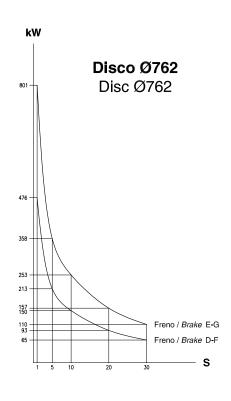
Spessore Thickness

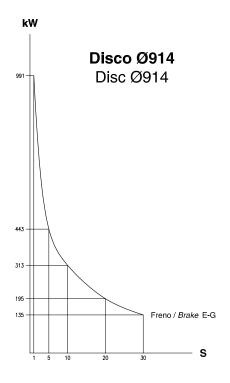
25.4 mm

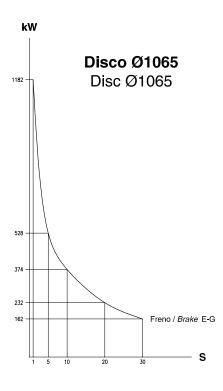
Materiale

Material

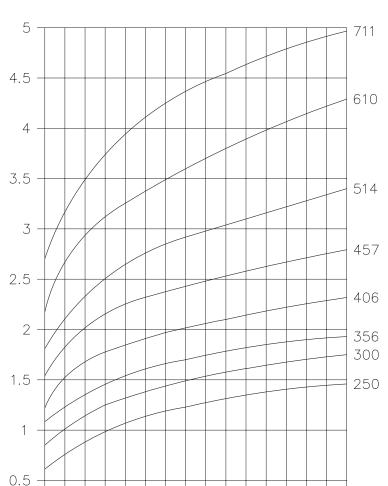

Ghisa Sferoidale


SG Iron


UNI-ISO 1083 - 500.7


Dissipazione di calore con △T = 170° C

Heat Dissipation with $\Delta T = 170^{\circ} C$



Diametro Disco mmDisc Diameter mm

Capacità termica - Frenata in continuo Thermal Capacity - Continuous Braking

I grafici qui sotto riportati sono uno strumento utile per la determinazione del calore in una prima fase della selezione del freno da applicare. Ciò nonostante, si consiglia di verificare il dato ottenuto mediante opportune analisi FEM e/o di contattare l'ufficio tecnico della Coremo per i dovuti accertamenti. The diagrams reported here below are a helpful instrument to determine the heat during an initial step of the brake selection. Nevertheless, it is suggested to verify such data through a FEM analysis and/or to contact Coremo's Technical Dept. for any verification that may be required.

kW

Technical Data

Dati Tecnici

Spessore Thickness

12.7 mm

Materiale Material

Ghisa Sferoidale SG Iron

UNI-ISO 1083 - 500.7

Dissipazione di calore con ΔT = 170° C Heat Dissipation with ΔT = 170° C

Velocità Disco min⁻¹ x 100 Disc Speed min⁻¹ x 100

8

9 10 11 12 13 14 15

Diametro Disco mm

• Capacità termica - Frenata in continuo

Thermal Capacity - Continuous Braking

kW

Dati Tecnici Technical Data

Spessore Thickness

25.4 mm

Materiale

Material

Ghisa Sferoidale SG Iron

UNI-ISO 1083 - 500.7

Dissipazione di calore con \triangle T = 170° C Heat Dissipation with \triangle T = 170° C
> Velocità Disco min⁻¹ x 100 Disc Speed min⁻¹ x 100

Obiettivo dei seguenti paragrafi è fornire, attraverso nozioni basiche della fisica inerente ai sistemi frenanti, degli strumenti semplici ed immediati a coloro che necessitano di una metodologia per selezionare, in modo appropriato e sicuro, il freno più adatto ad una specifica applicazione industriale.

A tal fine, le variabili in gioco sono molteplici e ciascuna di esse richiede una particolare attenzione. Gli elementi fondamentali da considerare sono: la tipologia di macchina industriale, l'ambiente di lavoro e l'utilizzo del sistema frenante. Rispetto a quest'ultimo punto possiamo individuare quattro tipologie di frenata:

- -frenata statica;
- -frenata di emergenza;
- -frenata in continuo;
- -frenata ciclica.

NOTA: In fase di selezione del freno, è necessario applicare il fattore di sicurezza previsto dalle normative vigenti relative alla tipologia di impianto in cui verrà installato, fatto salvo i casi in cui tale coefficiente di sicurezza non sia espressamente indicato nel presente catalogo.

NOTA: Le coppie iniziali possono essere dal 30% al 50% inferiori rispetto al valore nominale fino ad avvenuto rodaggio dei ferodi

Frenata statica

In questo caso, il sistema frenante interviene quando il dispositivo è già fermo, dovendo garantire l'immobilità rotatoria e traslatoria della macchina industriale o dei suoi componenti durante il suo stazionamento. Il ricorso a ferodi nuovi, non ancora rodati, e le molteplici variabili fisiche quali temperatura ambiente, umidità, rugosità superficiale del disco freno e della pastiglia ferodo, richiedono che, ai fini del calcolo, si consideri un coefficiente di sicurezza ≥ 2.

Frenata di emergenza

In questo caso, è richiesto che le masse traslanti o le inerzie rotanti siano fermate in tempi brevi in modo da garantire la sicurezza dell'impianto in caso di emergenza. Variabili quali la potenza termica da dissipare e la temperatura del disco freno non devono assumere valori critici.

Frenata in continuo

Si definisce frenata in continuo o tensionamento di un carico esterno il tiro di un materiale avvolto su un tamburo di una macchina industriale. Le variabili di particolare rilevanza sono la temperatura del disco e l'usura del ferodo. The following sections outline the basic physics concerning braking systems, in order to provide simple, quick tools for the appropriate, reliable selection of the most suitable brake for a specific industrial application.

There are a large number of variables involved, each requiring careful consideration. The fundamental factors are the type of industrial machine, the working environment and the way the braking system is used. As regards the use, there are four braking types:

- static braking;
- emergency braking;
- continuous braking;
- cyclic braking.

N.B: During the selection of a brake, it is necessary to apply the correct safety coefficient reported in the applicable current Legislation and Regulations regarding the plants or machine where the brake will be installed, except in those cases in which a specific coefficient is expressly indicated in the present catalogue.

N.B: The initial braking torque can be from 30% to 50% lower than the nominal value until the running-in of the linings has been completed.

Static braking

In this case, the braking system comes into operation when the device is already at a standstill, to guarantee rotational or translational inmobility of the machine and of its components, when not in operation. The use of new brake pads which have not yet been run in, and the many physical variables such as ambient temperature, humidity and the surface roughness of the brake disc and pad, mean that a safety coefficient ≥ 2 should be considered for the calculation.

Emergency braking

In this case, masses in translational motion or with rotational inertia must be stopped quickly in order to guarantee the system's safety in an emergency. Variables such as the thermal energy to be dispersed and the brake disc temperature must not reach critical values.

Continuous braking

The tension applied by a material wound onto a drum of an industrial machine is defined as continuous braking, or tensioning of an external load. The most significant variables are the disc temperature and the degree of brake pad wear.

Cyclic braking

A sequence of emergency braking operations is defined as cyclic braking. The thermal energy to be dispersed and the disc temperature during braking must comply with safety criteria by remaining below values consistent with the type of application, consi

Frenata ciclica

Si definisce frenata ciclica una sequenza di frenate di emergenza. La potenza termica da dissipare e la temperatura del disco durante la frenata devono rispettare il principio di sicurezza, rimanendo al di sotto dei valori coerenti al tipo di applicazione, in funzione dei fenomeni di convezione naturale e della conducibilità dei materiali.

Legenda

C coppia statica/dinamica o necessaria [Nm]

C_R coppia frenante o effettiva [Nm]

D_R diametro bobina [m]

D_T diametro del tamburo [m]

F_B forza tangenziale [N]

 $\mathbf{F}_{\mathbf{N}}$ forza normale [N]

J_d inerzia del disco freno [kgm2]

J_n inerzia del tamburo [kgm2]

J inerzia del carico [kgm2]

J_M inerzia del motore [kgm2]

J_R inerzia del riduttore [kgm2]

J_{tot} inerzia totale [Nm]

I larghezza del tamburo [m]

L, carico esterno [N] o [kg]

n, velocità di rotazione albero lento [rpm]

n, velocità di rotazione albero veloce [rpm]

Q calore prodotto in frenata [kW]

Q calore in continuo [kW]

r rapporto di riduzione [-]

r_p raggio del tamburo [m]

s interventi al minuto [min]

S fattore di sicurezza [-]

T_B tensione sulla bobina [N]

t, tempo di frenata [s]

V velocità lineare [m/min-1]

w velocità di rotazione angolare [rad/s]

NOTA: Consultare la legenda per la lettura delle formule riportate nei paragrafi a venire.

dering natural convection and the conductivity of the materials.

Legend

C static/dynamic or necessary torque [Nm]

C_B braking or effective torque **[Nm]**

D_B reel diameter [m]

D_T drum diameter [m]

F_B braking force [N]

 $\mathbf{F}_{\mathbf{N}}$ normal force [N]

J_d brake disc inertia [kgm2]

J_n drum inertia [kgm2]

J, load inertia [kgm2]

J_M motor inertia [kgm2]

J_R reduction gearbox inertia [kgm2]

J_{tot} total inertia [Nm]

I drum width [m]

L, external load [N] o [kg]

n, output shaft rotation speed [rpm]

n input shaft rotation speed **[rpm]**

Q heat produced during braking [kW]

Q continuous braking heat [kW]

r reduction ratio [-]

 $\mathbf{r}_{\mathbf{D}}$ drum radius $[\mathbf{m}]$

s operations per minute [min]

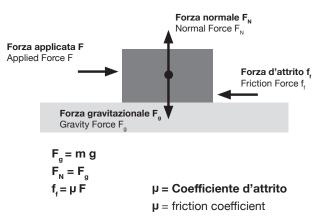
S safety factor [-]

T_B tension on reel [N]

t, braking time [s]

V linear speed [m/min-1]

w angular rotation speed [rad/s]


N.B.: Refer to the legend for an understanding of the formulae provided in the following sections.

DEFINITIONS

Friction is the force which opposes the relative motion between two surfaces.

DEFINIZIONI

L'Attrito è la forza che si oppone al moto relativo tra due superfici.

L'attrito statico è la forza di attrito da vincere prima che l'oggetto cominci a muoversi. Questa forza può essere considerata parte dell'equilibrio di un corpo rigido stazionario.

L'attrito dinamico è la forza di attrito che esiste in un corpo rigido che ha iniziato a muoversi.

Il Coefficiente di attrito μ misura l'attrito tra due superfici in contatto. Il coefficiente nominale di attrito tra il ferodo e i materiali standard dei dischi freno o delle guide lineari sulle quali agiscono è $\mu=0.4$

La forza normale F_N (o clamping force) è la forza di spinta normale esercitata da ciascun ferodo sul disco freno.

La forza tangenziale F_B (o braking force) è la forza frenante che agisce parallelamente tra il ferodo e il disco freno. Date, ad esempio, 2 superfici di attrito, come nel caso di un freno a disco, si avrà: $F_B = F_N \times \mu \times 2$

La coppia frenante C_B è il momento generato dalla forza tangenziale applicata nel baricentro dei ferodi moltiplicata per il raggio di frizione r_.:

$$C_R = F_R \times r_f [Nm]$$

Dove con raggio di frizione r_f si intende la differenza tra il raggio del disco rdisc e la distanza k tra il baricentro del ferodo e il bordo del disco, ovvero $r_f = (r_{disc} - k)$.

PRINCIPI DI CALCOLO

Per poter effettuare correttamente il calcolo di selezione, l'attenzione deve essere sempre rivolta alla sicurezza dell'impianto su cui saranno installati i freni. In tal senso, i dati di ingresso richiesti al cliente, quali spazio e tempi di frenata, carichi, inerzie e tutte le ulteriori informazioni inerenti l'applicazione sono le fondamenta per ottenere risultati adeguati alle esigenze dell'impianto industriale da mettere in sicurezza.

In particolare, i punti da tenere in considerazione per il calcolo di selezione sono i seguenti:

- Il sistema frenante, oltre a frenare le masse rotanti e traslanti, deve essere in grado di tenere il carico a macchina ferma.
- La potenza sviluppata nelle frenate dinamiche (emergenza, ciclica, continua) deve essere compatibile con la superficie dei ferodi.
- La temperatura dei dischi freno non deve

Static friction is the friction force which must be overcome before the object starts to move. This force can be considered part of the equilibrium of a stationary rigid body.

Dynamic friction is the friction force found in a rigid body which has begun to move.

Friction coefficient μ measures the friction between two surfaces in contact with each other. The nominal friction coefficient between the brake pad and the standard materials of the brake discs or linear ways on which it acts is $\mu=0.4$

The clamping force F_N (or normal force) is the normal thrust applied to the brake disc by each brake pad.

The braking force F_B (or tangential force) is the force acting in parallel between the brake pad and the brake disc. For example, if we have 2 friction surfaces, as in the case of a disc brake, we will have: $F_B = F_N \times \mu \times 2$

The braking torque C_B is the torque generated by the braking force applied in the centre of gravity of the brake pads, multiplied by the friction radius r_i :

$$C_{R} = F_{R} \times r_{f} [Nm]$$

Where the friction radius rf is the difference between the disc radius rdisc and the distance k between the centre of gravity of the brake pad and the edge of the disc, meaning $r_f = (r_{disc} - k)$.

CALCULATION PRINCIPLES

To calculate the selection correctly, the focus must always be on the safety of the system on which the brakes are to be installed. The input data requested from the customer, such as braking distance and times, loads, inertias and all additional information relating to the application are therefore fundamental in producing results suited to the industrial system to be made safe.

The main points to be considered for the selection calculation are:

- . As well as braking the masses in rotational and translational motion, the braking system must be able to secure the load when the machine is at a standstill.
- . The power developed during dynamic braking (emergency, cyclic or continuous) must be compatible with the surface area of the brake pads.
- . The brake disc temperature must not exceed specific values in order to guarantee that the braking system

superare certi valori in modo da garantire la corretta performance del sistema frenante.

Il punto di partenza nel calcolo iniziale è il bilanciamento tra tutte le forze agenti sulla macchina o la totalità delle inerzie delle parti rotanti in movimento; laddove, prese n parti in movimento, la totalità delle inerzie sarà espressa dalla seguente equazione generica:

$$\mathbf{J}_{\text{tot}} = \mathbf{J}_1 + \mathbf{J}_2 + \dots + \mathbf{J}_n$$

FONDAMENTI DI CALCOLO IN CASO **DI FRENATA STATICA**

Dati di ingresso per frenata statica

I dati di ingresso da conoscere per effettuare il calcolo di una frenata statica richiedente una certa coppia sono:

- ${\rm D_D}$ Diametro del tamburo [m] ${\rm L_1}$ Carico esterno [N]
- Coefficiente di sicurezza S≥2

Formule per il calcolo in caso di frenata statica:

Coppia statica o necessaria della macchina

$$C = L_1 \times (\frac{D_D}{2}) = [Nm]$$

Coppia statica effettiva minima richiesta al freno

$$C_R = C \times S = [Nm]$$

Dati di ingresso per frenata statica su una guida:

Carico esterno L, [N] Coefficiente di sicurezza S≥2

Formule per il calcolo in caso di frenata statica su una guida:

Forza tangenziale minima richiesta al freno $F_{R} = L_{1} \times S = [N]$

performs correctly.

The starting point for the initial calculation is the balancing of all the forces acting on the machine, or the total inertias of the rotating parts in motion, where, given n parts in motion, the total inertias will be expressed by the following standard equation:

$$J_{tot} = J_1 + J_2 + \dots + J_n$$

BASES FOR THE CALCULATION FOR STATIC BRAKING

Static braking input data

The input data which must be known in order to perform the calculation for static braking requiring a given torque are:

- D_D Drum diameter [m] L_1 External load [N]
- Safety Coefficient S≥2

Static braking calculation formulae:

Static torque or torque required by the machine

$$C = L_1 \times (\frac{D_D}{2}) = [Nm]$$

Minimum effective static torque required of the brake

$$C_R = C \times S = [Nm]$$

Input data for static braking on a rail:

External load L, [N] Safety Coefficient S≥2

Calculation formulae for static braking on a rail:

Minimal braking force required of the brake $F_{B} = L_{1} \times S = [N]$

CONCETTI BASE DI CALCOLO PER LA FRENATA **DI EMERGENZA**

I dati di ingresso necessari per la frenata di emergenza richiedente una coppia sono:

D_n Diametro del tamburo [m]

r_D Raggio del tamburo [m]

I Larghezza del tamburo [m]

L, Carico esterno [N]

J_D Inerzia del tamburo [kgm2]

J_d Inerzia del disco [kgm2]

J_M Inerzia del motore [kgm2]

J_R Inerzia del riduttore [kgm2]

J_d Inerzia del disco freno [kgm2]

r Rapporto di riduzione [-]

w, velocità di rotazione angolare albero lento [rad/s]

w, velocità di rotazione angolare albero veloce [rad/s]

t tempo di frenata [s]

n_L Velocità di rotazione albero lento [rpm]

n Velocità di rotazione albero veloce [rpm]

NOTA: Il rapporto di riduzione può essere inteso come il rapporto tra la velocità angolare dell'albero veloce w, e dell'albero lento w, entrambe espresse in [rad/s]:

$$r = \frac{w_V}{w_I}$$

È gioco forza che tale rapporto può essere inteso anche come il rapporto tra le velocità espresse in rotazione al minuto [rpm], ovvero:

$$r = \frac{n_V}{n_I}$$

Calcolo in caso di sistema frenante montato sull'albero veloce

In questo caso, il calcolo dovrà essere effettuato rapportando tutte le inerzie all'albero veloce. Partendo dall'inerzia totale J_{tot}, data dalla somma di tutte le inerzie:

$$J_{tot} = J'_{L} + J'_{D} + J_{d} + J_{R} + J_{M}$$

Si dovrà ora considerare che:

a) Se il momento d'inerzia del carico su albero lento J_i è dato dalla seguente relazione:

$$J_1 = L_1 r_D^2 = [kgm^2]$$

Con L₁ espresso in [kg], il momento di inerzia del carico sull'albero veloce J', sarà:

$$J'_1 = J_1 / r^2$$

Dove il rapporto di riduzione r sarà dato da $r = (w_v / w_i)$

BASIC CALCULATION CONCEPTS FOR **EMERGENCY BRAKING**

The input data needed for emergency braking requiring a torque are:

D_D Drum diameter [m]

r_D Drum radius [m]
I Drum width [m]

L₁ External load [N]

J_D Drum inertia [kgm2]

J_d Disc inertia [kgm2]

J_M Motor inertia [kgm2]

J_R Reduction gearbox inertia [kgm2]

J_d Brake disc inertia [kgm2]

r Reduction ratio [-]

w, output shaft angular rotation speed [rad/s]

w, input shaft angular rotation speed [rad/s]

t braking time [s]

n, Output shaft rotation speed [rpm]

n, Input shaft rotation speed [rpm]

N.B.: The reduction ratio can be considered as the ratio between the angular speed of the input shaft wv and the output shaft w, both in [rad/s]:

$$r = \frac{W_V}{W_I}$$

Naturally, this ratio can also be considered as the ratio between the speeds in revolutions per minute [rpm]:

$$r = \frac{n_V}{n_I}$$

Calculation in case of braking system mounted on the input shaft

In this case, the calculation must be performed by relating all the inertias to the input shaft. Starting from the total inertia J_{tot}, which is the sum of all the inertias:

$$J_{tot} = J'_{1} + J'_{D} + J_{d} + J_{B} + J_{M}$$

It now has to be considered that:

a) If the moment of inertia of the load on the output shaft J_i is provided by the following relation:

$$J_1 = L_1 r_0^2 = [kgm^2]$$

With L, in [kg], the moment of inertia of the load on the input shaft J', will be:

$$J'_{\perp} = J_{\perp} / r^2$$

Where the reduction ratio r will be provided by $r = (w_{v} / w_{l})$

b) The moment of inertia of the drum on the output shaft is provided by the following relation:

$$J_D = \pi \rho I (D^4 - d^4) / 32 [kgm^2]$$

b) Il momento di inerzia del tamburo sull'albero lento è dato dalla seguente relazione:

$$J_D = \pi \rho I (D^4 - d^4) / 32 [kgm^2]$$

Dove $\rho=7840$ [kg/m3] è la densità di massa per l'acciaio, mentre D e d sono rispettivamente il diametro massimo e minimo del tamburo. Quindi, il momento di inerzia del carico J'_D sull'albero veloce sarà:

$$J'_D = J_D / r^2$$

- c) L'inerzia del disco $J_{\rm d}$ è di solito trascurabile rispetto alle altre grandezze in gioco, in quanto irrisoria.
- d) J_R [kgm²]: inerzia del riduttore su albero veloce.
- e) J_M [kgm²]: inerzia del motore su albero veloce.

È ora possibile calcolare la coppia inerziale sull'asse lento sulla base della seguente formula

$$C = (J_T n_y) / (9.55 t_i)$$

Calcolo in caso di sistema frenante montato sull'albero lento

Il calcolo della coppia inerziale sull'albero lento dovrà essere effettuato rapportando tutte le inerzie all'albero lento. Punto di partenza è quindi l'equazione che definisce l'inerzia totale $J_{\scriptscriptstyle T}$ come la somma di tutte le inerzie, ovvero:

$$J_{tot} = J_1 + J_D + J_d + J_B + J_M$$

In questo caso però, dovremo considerare che: a) Il calcolo del momento d'inerzia del carico su albero lento J, sarà dato dalla seguente relazione:

$$J_1 = L_1 r_0^2 = [kgm^2]$$

Con L₁ [kg] carico esterno e r_D [m] raggio del tamburo

b) Il momento di inerzia del tamburo su albero lento $J_{\rm n}$ sarà dato da:

$$J_D = \pi \rho I (D^4 - d^4) / 32 [kgm^2]$$

Dove $\rho = 7840 \, [kg/m^3]$ è la densità di massa per l'acciaio, mentre D e d sono rispettivamente il diametro massimo e minimo del tamburo.

- c) L'inerzia del disco J_d è di solito trascurabile rispetto alle altre grandezze in gioco, in quanto irrisoria.
- d) L'inerzia del riduttore su albero veloce J_R dovrà essere ora rapportata all'asse lento.

$$J'_{R} = J_{R} \times r^{2}$$

Where ρ =7840 [kg/m3] is the mass density of the steel, while D and d are the maximum and minimum drum diameters, respectively. The moment of inertia of the load J'_n on the input shaft will be:

$$J'_{D} = J_{D} / r^{2}$$

- c) The inertia of the disc $J_{\rm d}$ is generally negligible compared to the other parameters in play, since it is very low.
- d) J_R [kgm²]: reduction gearbox inertia on input shaft.
- e) J_M [kgm²]: motor inertia on input shaft.

We can now calculate the inertia torque on the output shaft using the following formula

$$C = (J_T n_v) / (9.55 t_f)$$

Calculation in case of braking system mounted on output shaft

The inertia torque on the output shaft must be calculated by considering all the inertias in relation to the output shaft. The starting point is therefore the equation which defines the total inertia $J_{\rm T}$ as the sum of all the inertias, as follows:

$$J_{tot} = J_L + J_D + J_d + J_R + J_M$$

However, in this case we will have to bear in mind that: a) The calculation of the moment of inertia of the load on the output shaft J_L is provided by the following relation:

$$J_1 = L_1 r_D^2 = [kgm^2]$$

Where $\rm L_{_{1}}$ [kg] is the external load and $\rm r_{_{D}}$ [m] the drum radius

b) The moment of inertia of the drum on the output shaft $J_{\rm D}$ will be provided by:

$$J_{D} = \pi \rho I (D^4 - d^4) / 32 [kgm^2]$$

Where $\rho=7840$ [kg/m³] is the mass density for the steel, while D and d are the maximum and minimum drum diameters, respectively.

- c) The inertia of the disc $J_{\rm d}$ is generally negligible compared to the other parameters in play, since it is very low.
- d) The reduction gearbox inertia on the input shaft $\rm J_{\rm R}$ now has to be calculated in relation to the output shaft.

$$J'_{B} = J_{B} \times r^{2}$$

e) L'inerzia del motore sull'albero veloce $J_{\scriptscriptstyle M}$ dovrà essere moltiplicata per il quadrato del rapporto di riduzione r:

$$J'_{M} = J_{M} \times r^{2}$$

È ora possibile calcolare la coppia inerziale sull'asse lento sulla base della seguente formula:

$$C = (J_{\tau} n_{i}) / (9.55 t_{i})$$

Calcolo del calore

Il calore prodotto durante una frenata d'emergenza sull'asse lento è dato da:

$$Q = \frac{J_T \cdot n_L^2}{182.5 \cdot 10^3 \cdot t_f}$$

NOTA: Vi invitiamo a contattare l'Ufficio Tecnico della Coremo per verificare che la potenza prodotta durante la frenata di emergenza sia compatibile con la potenza specifica di dissipazione del freno selezionato al fine di garantire le performance e la durata delle pastiglie nonché la sicurezza dell'impianto.

CALCOLO PER FRENATA IN CONTINUO

Nelle frenature in continuo bisogna tenere in considerazione tre parametri importanti:

- La coppia da tensionare [Nm];
- Il calore generato in continuo [kW];
- La capacità di smaltire il calore del ferodo [kW/cm²]

La coppia da tensionare

Il sistema frenante deve bilanciare la coppia generata dalla tensione $T_{\rm B}$ [N] sulla bobina con diametro $D_{\rm B}$ min e/o max in [m].

$$C = \frac{T_B x D_B}{2}$$

Il calore generato in continuo

Per effetto della frenatura in continuo il sistema composto da freno più disco genera, durante il lavoro, un calore che deve essere smaltito mediante convezione naturale o forzata per garantire l'efficienza della frenatura. Pertanto, il calore generato sarà dato da:

Qc=
$$\frac{T \times V}{60 \times 10^3}$$

La capacità di smaltire il calore del ferodo [kW/cm²]

Vi invitiamo a contattare l'Ufficio Tecnico della Coremo per verificare tale parametro, al fine di garantire le performance e la durata delle pastiglie nonché la sicurezza dell'impianto. e) The motor inertia on the input shaft J_{M} will have to be multiplied by the square of the reduction ratio r:

$$J'_{M} = J_{M} \times r^{2}$$

We can now calculate the inertia torque on the output shaft using the following formula:

$$C = (J_T n_i) / (9.55 t_f)$$

Heat calculation

The heat generated during an emergency braking on the output shaft is provided by:

$$Q = \frac{J_T \cdot n_L^2}{182.5 \cdot 10^3 \cdot t_f}$$

N.B.: You are advised to contact the Coremo Technical Department to check that the power produced during emergency braking is compatible with the specific heat dispersal power of the selected brake, in order to guarantee both brake pad performance and duration and the safety of the system.

CONTINUOUS BRAKING CALCULATION

For continuous braking, three important parameters must be considered:

- The torque to be tensioned [Nm];
- The heat continually generated [kW];
- The heat dispersal capacity of the brake pad [kW/cm²]

Torque to be tensioned

The braking system must balance the torque generated by the tension $T_{\rm B}$ [N] on the reel with min and/or max diameter $D_{\rm B}$ in [m].

$$C = \frac{T_B x D_B}{2}$$

Continuous braking heat

Due to the continuous braking, during work the brake plus disc system generates a heat which must be dispersed through natural or fan-assisted convection, to guarantee braking efficiency. The heat generated will therefore be given by:

$$Qc = \frac{T \times V}{60 \times 10^3}$$

The heat dispersal capacity of the brake pad [kW/cm²]

You are advised to contact the Coremo Technical Department to check this parameter, in order to guarantee both brake pad performance and duration and the safety of the system.

CALCOLO PER FRENATA CICLICA

La frenata ciclica è da considerarsi come una successione di frenate di emergenza intervallate da pause più o meno brevi durante le quali il sistema frenante può raffreddarsi per convezione naturale o forzata.

Nel calcolo della frenata ciclica bisogna considerare due aspetti:

- Calore prodotto a frenata [kW];
- Calore prodotto in continuo [kW]

Il calcolo della coppia e del calore prodotto sulla singola frenata deve seguire la stessa logica vista per il calcolo della frenata di emergenza (si vedano pagg. 120 e seguenti).

Il calcolo del calore prodotto in continuo [kW] nella frenata ciclica è dato da:

$$Q_{C} = \frac{Q \cdot s \cdot t_{f}}{60}$$

Dove, in questo caso, la lettera s indica gli interventi al minuto.

NOTA: Per approfondimenti e chiarimenti vi invitiamo a contattare l'Ufficio Tecnico della Coremo Ocmea SpA, il quale vi fornirà tutta l'assistenza necessaria per la verifica dei calcoli e della selezione del sistema frenante idoneo alla vostra applicazione.

VELOCITÀ DI STRISCIAMENTO

Un altro fattore importante da considerare in quelle applicazioni caratterizzate da alte velocità di rotazione è la velocità di strisciamento. Tale velocità è data dalla seguente formula:

$$V = w_m * r_f (m/s)$$

Si ricorda che w_m indica la massima velocità di rotazione del disco, mentre r_f è il raggio effettivo (o raggio di frizione) dato da , r_f = r_{disc} - k ; dove k è la distanza tra i baricentro del ferodo e il bordo del disco. In linea generale, si raccomanda, per i ferodi standard, un valore di circa 30 m/s. Qualora si eccedesse questo valore, le performance di frenatura potrebbero ridursi. In tal caso, si invita a contattare l'Ufficio Tecnico della Coremo per ulteriori accertamenti.

CYCLIC BRAKING CALCULATION

Cyclic braking is equivalent to a series of emergency braking operations separated by pauses of varying duration, during which the braking system is able to cool down by natural or fan-assisted convection.

Two factors have to be considered when calculating cyclic braking:

- Heat produced per braking operation [kW];
- Continuous braking heat [kW]

The torque and the heat produced for each single braking operation have to be calculated in the same way as for emergency braking (see page 120 and following pages).

The continually heat [kW] during cyclic braking is provided by:

$$Q_{c} = \frac{Q \cdot s \cdot t_{f}}{60}$$

Where, in this case, s stands for the number of operations per minute.

N.B.: For further details and explanations, please contact the Coremo Ocmea SpA Technical Department, which will provide you with all necessary assistance to check the calculations and select the braking system best suited to your application.

RUBBING SPEED

The rubbing speed is an important factor to be considered in those applications characterized by a high-rotation. Such speed is given by the following formula:

$$V = w_m * r_f (m/s)$$

It is reminded that w_m indicates the maximum disc speed and $r_{_f}$ the effective radius, given by $r_{_f} = r_{_{disc}}$ - k; where k is the distance between the centre of gravity of the brake and the edge of the disc.

Generally the recommended value for standard pad materials is 30 m/s. If such value is overcome, the braking performance could be reduced. In this case, we suggest to contact Coremo's Technical Dept. for further verifications.

Avvertenze GeneraliGeneral Warnings

Usare indumenti appropriati Use proper work clothes

Possibili pesi elevati Possible high weights

Possibili alte temperature Possible high temperatures

Possibili alte pressioni Possible high pressures

Attenzione alle mani e alle dita Caution to hands and fingers

In ottemperanza al DPR 224/88 Direttiva CEE n. 85/374 definiamo i limiti di impiego per il corretto utilizzo del nostro prodotto garantendo la salvaguardia degli aspetti di sicurezza.

Caratteristiche di progetto

I freni della Coremo Ocmea sono stati progettati per operare in conformità delle prestazioni e condizioni previste nel presente catalogo e delle relative specifiche tecniche. È fatta in ogni caso raccomandazione perchè tali limiti non vengano superati.

Selezione di applicazione

Premessa di fondamentale importanza è una corretta selezione dell'unità da impiegare. Nella selezione bisogna tener conto di un appropriato coefficiente di sicurezza. In caso di freni di stazionamento il coefficiente di sicurezza non deve essere inferiore a 2. L'Ufficio Tecnico della Coremo Ocmea è a disposizione per informazioni, suggerimenti e collaborazione per una corretta applicazione ed impiego.

Impiego

Il rispetto delle istruzioni di montaggio e manutenzione, oltre ad evitare costose soste improduttive, previene incidenti dovuti alla non completa conoscenza del prodotto.

ATTENZIONE: la coppia iniziale può essere dal 30% al 50% inferiore rispetto al valore nominale, fino ad avvenuto rodaggio dei ferodi.

Precauzioni al montaggio e manutenzione

Agli addetti a tale funzione si consiglia l'impiego di equipaggiamenti idonei, guanti, occhiali od altro per la protezione adeguata da carichi e/o pesi.

Parti rotanti

Le parti in movimento devono essere protette in conformità a quanto prescritto dalle Direttive 98/37/CEE e DPR 459/96 o dalle equivalenti norme vigenti nei paesi in cui vengono utilizzate.

According to EEC rules no. 85/374 we define the correct use of the product in order to comply with safety regulations.

Characteristics of the design

Coremo Ocmea Brakes are designed to operate according to the application, conditions and technical specifications as set out in this catalogue. We recommend that the maximum data shown are not overcome.

Application selection

It is essential when selecting to take in consideration an appropriate safety coefficient. In case of holding brakes this coefficient should be not less than 2. Our Technical Department at Coremo Ocmea is available for information, suggestions and cooperation for the correct application and use.

Use

The Mounting and Maintence instructions must be observed so as to prevent accidents, breakage, etc. Incorrect mounting and maintence of the unit could also result in reduced life of the product and expensive down time.

WARNING: the initial torque on new units can be from 30% to 50% lower than the nominal value until the running-in of the linings has been completed.

Precautions for the mounting and maintenance

Operators are advised to wear the correct protective clothing such as gloves, safety glasses, etc.

Rotating parts

The moving parts have to be protected according to the European EEC directives no. 98/37, or the equivalent norms effective in the Countries where they are used.

Corretto Utilizzo del Prodotto

Freni negativi a molle

I freni negativi a molle devono essere trattati con particolare attenzione, perchè contengono molle meccanicamente precaricate.

Materiali di attrito

Tutti i freni Coremo Ocmea sono equipaggiati con materiale di attrito assolutamente esente da amianto e nel pieno rispetto delle Normative e Leggi in vigore per la tutela della salute ed il rispetto dell'ambiente. È comunque buona cosa non inalare la polvere da essi prodotta e lavarsi accuratamente le mani prima di ingerire cibi o bevande.

Coefficiente di attrito

Il valore del coefficiente d'attrito pari a 0,4 di cui ai calcoli riportati nelle diverse schede tecniche del presente catalogo è puramente teorico, essendo utilizzato ai fini meramente esplicativi. Tale valore può variare a seconda delle condizioni specifiche delle singole applicazioni.

Oli, grassi e componenti lubrificanti

Vengono impiegati in quantità estremamente limitate. Per eventuali allergie a queste sostanze si consiglia l'uso di guanti o creme protettive da asportare con accurato lavaggio delle mani prima di ingerire cibi o bevande.

Alimentazione per freni

Per freni pneumatici usare aria non contaminata da olio o acqua, utilizzando un filtro da 25 micron con scarico automatico della condensa.

Per freni idraulici usare i seguenti olii a base minerale:

- versione standard: SAE/ISO 46
- versione offshore (OS): SAE/ISO 46
- versione basse temperature (VL): ISO VG15
- versione combinata offshore + basse

temperature (XT): ISO VG15

Immagazzinamento

Nello stoccaggio dei freni si deve tenere conto di un'alta concentrazione di peso in poco spazio. Si consiglia un equipaggiamento idoneo agli addetti a tale funzione (scarpe di sicurezza, caschi, etc) al fine di prevenire il rischio di incidenti.

Smaltimento

Le pastiglie di attrito usurate e gli altri materiali di cui i freni a pinza sono composti, sono classificati come prodotti NON Tossico-Nocivi, pertanto devono essere smaltiti in conformità e nel rispetto delle leggi vigenti nei paesi in cui vengono utilizzati.

Stoccaggio

I freni della Coremo Ocmea contengono membrane e/o anelli di tenuta in gomma che in caso di incendio possono generare gas tossici. Agli addetti allo speqnimento, si consiglia l'uso della maschera antigas.

Spring applied failsafe brakes

Failsafe brakes must be treated with special attention because they have mechanical pre-tensioned springs.

Friction parts

Coremo Ocmea Brakes are supplied with non asbestos friction material which is in accordance to the Health and Safety regulations. Even though the linings are asbestos free, the dust produced by the linings should not be inhaled and hands should be thoroughly cleaned before eating or drinking.

Friction Coefficient

The friction coefficient value of 0,4, reported in every technical data sheet of the present catalogue, is purely theoretical and used for explanatory purposes. Such value can vary according to the specific conditions of each application.

Oils, greases and lubricating components

Although used in very small quantities, people who suffer allergies are advised to use protective creams, when maintaining Coremo's products, and to wash hands thorougly before eating or drinking.

Power source for brakes

For pneumatic brakes use air not contaminated with oil or water and a 25 micron filter with automatic condensation discharge.

For hydraulic brakes use the following mineral based oils:

- standard version: SAE/ISO 46
- offshore version (OS): SAE/ISO 46
- low temperature version (VL): ISO VG15
- combined version offshore + low temperature (XT): ISO VG15

Storage

When storing or handling brakes, the weight of the product must be observed to ensure correct and safe storage and lifting. We advise that you use the correct protective clothing, safety shoes, helmets, gloves, etc., so as to prevent the risk of accidents.

Disposing

All worn linings and other materials used in our Caliper Brakes are classified as NON Toxic-Harmful products, therefore they must be disposed according to the industrial rules and laws of the Country where they are used.

Stocking

Coremo Ocmea Brakes contain rubber diaphragms and seals; in case of fire they can generate toxic gases, therefore the Fire Brigade or Internal Fire Personnel must use the correct masks when extinguishing.

Coremo Ocmea Spa si riserva il diritto di apportare modifiche ai contenuti di questo catalogo nonché ai prodotti in esso illustrati, in qualunque momento senza l'obbligo di preavviso.

Coremo Ocmea Spa reserves the right to modify the content and the products of this catalogue, at any time without prior notice.

Tutti i diritti intellettuali, inclusi il marchio e i copyrights, sono riservati.

All intellectual rights, included the trademarks and the copyrights, are reserved.

Coremo Ocmea Freni e Frizioni Industriali

& Tyre

Mining

Wire

& Cable

Energy

Marine

Amusement Park

Coremo Ocmea produce freni e frizioni ad azionamento meccanico, pneumatico ed idraulico per i settori del filo & cavo, lamiera, siderurgico, tessile, carta, converting, packaging ed in generale per tutte le applicazioni industriali.

Coremo Ocmea, fondata nel 1960, ha sede in Assago (MI), in uno stabilimento di 5.500 m².

Coremo Ocmea manufactures mechanical, pneumatic and hydraulic brakes and clutches for the industries of wire & cable, metalforming, steel, textile, paper, converting, packaging and for all other industrial applications.

Coremo Ocmea, established in 1960, is based in Assago - Milan (Italy) with a 5.500 m² plant.

Coremo Ocmea S.p.A. **Coremo France**

Via G. Galilei 12 20090 Assago (MI) T + 39 02 488 06 97 F + 39 02 488 19 40

info@coremo.it coremo.com

12 avenue de Prés 78180 Montigny le Bretonneux Tel. +33/01 48 94 76 72 Fax +33/01 48 94 13 51

coremo.fr

ATMOSPHÈRES EXPLOSIBLES